Wireless HDL Toolbox™
User's Guide

7

MATLAB&SIMULINK

R2021a ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Wireless HDL Toolbox™ User's Guide
© COPYRIGHT 2017 - 2021 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

Revision History

September 2017 Online only New for Version 1.0 (Release 2017b)

March 2018 Online only Revised for Version 1.1 (Release 2018a)
September 2018 Online only Revised for Version 1.2 (Release 2018b)
March 2019 Online only Revised for Version 1.3 (Release 2019a)
September 2019 Online only Revised for Version 1.4 (Release 2019b)
March 2020 Online only Revised for Version 2.0 (Release 2020a)
September 2020 Online only Revised for Version 2.1 (Release 2020b)

March 2021 Online only Revised for Version 2.2 (Release 2021a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

1]

Model Architecture

Streaming Sample Interface 1-2
What Is a Streaming Sample Interface? 1-2
How Does a Streaming Sample Interface Work? 1-2

Why Use a Streaming Sample Interface? 1-2
Sample Stream CONVETrSIONttt 1-3
Timing Diagram of Serial Sample Interface 1-3
Using the nextFrame Output Signal 1-4
Sample Control Bus e 1-7
Troubleshooting: 1-7
Configure the Simulink Environment for Hardware Design 1-8
About Simulink Model Templates 1-8
Create Model Using Wireless HDL Toolbox Model Template 1-8
Wireless HDL Toolbox Model Templates 1-9

HDL Code Generation and Verification

2|

HDL Code Generation Support 2-2
HDL Code Generation Support in Wireless HDL Toolbox 2-2
Other Blocks Supporting HDL Code Generation 2-2
Streaming Sample Interface in HDL 2-3

Generate HDL Code i, 2-5
Prepare Model 2-5
Generate HDL Codettt e e e 2-5
Generate HDLTestBench 2-5

FPGA-in-the-Loop i, 2-6
FIL Workflow: Framed Data from MATLAB 2-6
FIL Workflow: Streaming Data from MATLAB 2-8

Prototype Wireless Communications Algorithms on Hardware 2-12
How to Install Support Packages 2-12
Design Requirements i 2-13
Design for Debugging e 2-13

iii

iv

Contents

Reference Page Examples

3|

Append CRC Checksum to StreamingData 3-2
Check for CRC Errors in Streaming Samples 34
Turbo Encode Streaming Samples 3-6
Turbo Decode Streaming Samples 3-8
Convolutional Encode of Streaming Samples 3-11
Convolutional Decode of Streaming Samples 3-13
Descrambling with Gold Sequence Generator 3-16
Parallel Gold Sequence Generation 3-18
LTE OFDM Demodulation of Streaming Samples 3-20
Reset and Restart LTE OFDM Demodulation 3-24
Modulate and Demodulate LTE Resource Grid 3-28
OFDM Modulation of LTE Resource Grid Samples 3-31
Depuncture and Decode Streaming Samples 3-34
LTE Symbol Modulationof DataBits 3-38
NR Symbol Modulation of DataBits 3-40
LTE Symbol Demodulation of Complex Data Symbols 3-42
NR Symbol Demodulation of Complex Data Symbols 3-45
Application of FFT 1536 block in LTE OFDM Demodulation 3-48
Convolutional Encode and Puncture Streaming Samples 3-51
OFDM Demodulation of Streaming Samples 3-54
Decode and recover message from RS codeword 3-57
LDPC Encode and Decode of StreamingData 3-59
Estimate Channel Using Input Data and Reference Subcarriers 3-63
Modulate and Demodulate OFDM Streaming Samples 3-71
Polar Encode and Decode of Streaming Samples 3-74

NR CRC Encode and Decode StreamingData 3-78
Equalize OFDM Data Using Channel Estimates 3-82

LDPC Decode Streaming Data for Multiple Code Rates with Early
Termination 3-91

4

Sample Rate Conversion for an LTE Receiver 4-2
HDL Code Generation for Filtered OFDM (F-OFDM) Transmitter 4-15
HDL Implementation of a Variable-Size FFT 4-25
Accelerate BER Measurement for Wireless HDL LTE Turbo Decoder ... 4-35
Encode message to RScodeword 4-41
HDL Implementation of AWGN Generator 4-44
HDL Implementation of Digital Predistorter 4-55

Encode Streaming Data Using General CRC Generator HDL Optimized
Block for 5GNR Standard 4-62

Reference Applications

S|

NR HDL MIB Recovery for FR2 5-2
NRHDL MIB RECOVEIYot 5-9
NR HDL Cell Search and MIB Recovery MATLAB Reference 5-22
NRHDLCell Search 5-38
Deploy NR HDL Reference ApplicationsonSoCs 5-55
LTEHDL Cell Search i, 5-57
ITEHDL SIB1 RECOVELYottt e 5-74
ITEHDL MIB RECOVETYttt ittt e 5-92
LTE HDL PBCH Transmitter 5-103

vi

Contents

Deploy LTE HDL Reference Applicationson SoCs

HDL OFDM MATLAB References ..

HDL OFDM Transmitter

HDL OFDM Receiver

Deploy Custom Communication SystemsonSoCs

WLAN HDL Time and Frequency Synchronization

HDL Interleaver and Deinterleaver

5-119

5-121

5-135

5-151

5-169

5-171

5-181

Model Architecture

1 Model Architecture

Streaming Sample Interface

1-2

In this section...

“What Is a Streaming Sample Interface?” on page 1-2

“How Does a Streaming Sample Interface Work?” on page 1-2
“Why Use a Streaming Sample Interface?” on page 1-2
“Sample Stream Conversion” on page 1-3

“Timing Diagram of Serial Sample Interface” on page 1-3
“Using the nextFrame Output Signal” on page 1-4

What Is a Streaming Sample Interface?

In hardware, processing an entire frame of data at one time has a high cost in memory and area. To
save resources, serial processing is preferable in HDL designs. Wireless HDL Toolbox blocks operate
on one sample at a time rather than a frame. The blocks accept and return data as a serial stream of
samples and control signals. The control signals indicate the frame boundaries. The protocol mimics
the characteristics of a real-world system, including inactive intervals between samples and frames.

How Does a Streaming Sample Interface Work?

The control protocol uses start and end signals to demark each frame, and a valid signal to indicate
which samples to process. The Wireless HDL Toolbox streaming sample protocol allows you to
configure the number of idle cycles between samples and between frames. Idle cycles model the
bursty character of real-world systems.

This protocol allows for frames of different sizes, such as if runt or partial frames enter the system
due to synchronization changes.

Why Use a Streaming Sample Interface?
Format Independence

The blocks that use this interface do not need a configuration option for an exact frame size or
inactive intervals. In addition, if you change the input data timing for your design, you do not need to
update each block. Instead, update the stream configuration once at the serialization step. Some
blocks still require a maximum frame size parameter to allocate memory resources.

Error Tolerance

By using a streaming sample interface with control signals, each Wireless HDL Toolbox block starts
computation on a fresh set of samples at the start-of-frame signal. Computations on the new frame
occur whether or not the block receives the end signal for the previous frame.

The protocol tolerates minor timing errors. If the number of valid and invalid cycles between start
and end signals varies, the blocks continue to operate correctly. This protocol makes the system
resilient to runt frames and synchronization changes.

The Wireless HDL Toolbox encoder blocks require minimum between-frame spacing to accommodate
insertion of codewords. The turbo and convolutional decoder blocks require that the previous frame

Streaming Sample Interface

is decoded (has asserted the frame end signal) before the next frame arrives. The polar, LPDC, and
RS encoder and decoder blocks provide a signal to indicate when the block is ready to receive the
start of a new frame.

Sample Stream Conversion

Use the Frame To Samples block to convert framed data to a stream of samples and control signals
that conform to this protocol. The control signals are grouped in a bus data type called
samplecontrol.

The Frame To Samples block can serialize fixed-size frames. If your frames vary in size, use the
whdlFramesToSamples function to convert framed data to vectors of samples and control signals in
MATLAB®. Then import the vectors to Simulink®. Use the Sample Control Bus Creator block to create
a samplecontrol bus in your model.

If your data is already in a serial format, design your own logic to generate these control signals from
your existing serial control scheme.

Supported Sample Data Types

Wireless HDL Toolbox blocks have an input and output port, sample, for the streaming sample data.
The blocks capture one sample at a time from the input, and produce one sample at a time for output.
The samples can be one of these supported data types.

Port Description Data Type
sample Scalar integer value that represents one sample. Supported data types include:
The protocol also allows for a vector of integer * Boolean

values that represent a single sample, such as for e uintorint

turbo-encoded samples. : .
o ufixorsfix

double and single are supported
for simulation but not for HDL code
generation.

Streaming Sample Control Signals

Wireless HDL Toolbox blocks have an input and output port, ctrl, for the frame control signals
relating to each sample. These three control signals indicate the validity of a sample and the
boundaries of the frame. The control signal port is a nonvirtual bus data type called samplecontrol.
For details of the bus data type, see “Sample Control Bus” on page 1-7.

Timing Diagram of Serial Sample Interface

The timing diagram illustrates the streaming sample protocol. It shows a six-sample input frame and
the equivalent sequence of control and data signals.

1-3

1 Model Architecture

» frame
sample

¥ cirl

start
end
valid

J7TB8D10 1112

The input frame is ([1 2 3 4 5 6]) ', and the serializer is configured to insert idle cycles around
the valid samples:

* One idle cycle between samples
* Three idle cycles between frames
* One value representing each sample (default output size)

You can specify these parameters by using either the Frame To Samples block or the
whdlFramesToSamples function.

The control signals start and end are 1 for the first and last valid samples of the frame, respectively.
The valid signal is 1 for each valid input sample. The valid signal is O for the idle cycles inserted
between the samples and between the frames. The six-sample frame is now represented by streaming
data over 15 cycles.

Using the nextFrame Output Signal

The NR Polar Encoder, NR Polar Decoder, NR LDPC Encoder, NR LDPC Decoder, and RS Decoder
blocks each provide an output signal to indicate when the block is ready to receive the start of a new
frame. This signal is necessary because these blocks cannot accept a new frame at certain stages of
internal computations, and the latency of those stages can vary with the values of input ports.

Port

Description Data Type

nextFrame Boolean scalar that indicates when the block can Boolean

accept the start of a new frame

1-4

This waveform shows the NR Polar Encoder block processing several frames. The nextFrame output
signal is @ when the block is processing data, and 1 when the block is ready to receive the start of a
new frame. The cursors show the latency varying with the values of the input K and E port values.
For the first frame with given K and E values, the block must determine the message length and
information bit mapping for those values. This configuration stage means the block needs some time
before it is ready to accept the next input frame. For subsequent frames with the same values for K
and E, the block is ready sooner because it does not need to recompute the configuration.

Streaming Sample Interface

Ihll.llll.

/.
. Y
|
|

132 15410
[256 o
| ([l LN [N RN R
| 1 I I

500 5
[1021 s]

If the block receives an input start signal while nextFrame is 0, the block discards the frame in
progress and begins processing the new data. This waveform shows an NR Polar Encoder input frame
(3) applied when nextFrame is 0. The block discards the frame in progress (2) and processes the

new frame (3) as normal.

(TR AT
{ 1
|

|

gl [T11R] L IIETYLTT]
I 7 B I
il

132 0

256 (1]
UT RN IRTEEn FUTRILTE AT
| | | |
I

If the block receives an invalid input frame, for example, if the frame size is not within the supported
range, then the block sets nextFrame to 1 one cycle after the input end signal. This behavior
indicates that the input frame is discarded. This waveform shows an NR Polar Encoder input frame
(1) that does not have the correct number of samples expected for the accompanying K and E values.
The waveform shows the nextFrame signal set to 1 immediately after the input end signal from
frame 1. The block discards the frame in progress (1) and processes the new frame (2) as normal.

1-5

Model Architecture

1-6

TR
| AR |
|

[1L_JRIRpEe]

1 A
1

See Also

Blocks
Frame To Samples | Samples To Frame

Functions
whd1lFramesToSamples | whdlSamplesToFrames

Related Examples

. “Verify Turbo Decoder with Streaming Data from MATLAB”
. “Verify Turbo Decoder with Framed Data from MATLAB”

Sample Control Bus

Sample Control Bus

Wireless HDL Toolbox blocks use a nonvirtual bus data type, samplecontrol, for control signals
associated with serial data. The bus contains three boolean signals indicating the validity of a
sample and the boundaries of the frame. You can easily connect one block to another, because all
Wireless HDL Toolbox blocks use this bus for input and output. To convert frames into a sample
stream and a samplecontrol bus, use the Frame To Samples block. This block serializes fixed-size
frames. If your frames vary in size, use the whdlFramesToSamples function to convert the frames to
a data vector in MATLAB, and then import the data into Simulink.

Signal Description Data Type

start true for the first sample in the frame Boolean

end true for the last sample in the frame Boolean

valid true for any valid sample Boolean
Troubleshooting:

When you generate HDL code from a Simulink model that uses this bus, you may need to declare an
instance of samplecontrol bus in the base workspace. If you encounter the error Cannot resolve
variable 'samplecontrol' when you generate HDL code in Simulink, use the
samplecontrolbus function to create an instance of the bus type. Then try generating HDL code
again.

To avoid this issue, the Wireless HDL Toolbox model template includes this line in the InitFcn
callback.

evalin('base', 'samplecontrolbus")

You can also call this command from the MATLAB command line.

See Also

Blocks
Frame To Samples | Samples To Frame

More About

. “Streaming Sample Interface” on page 1-2

1-7

1 Model Architecture

Configure the Simulink Environment for Hardware Design

1-8

About Simulink Model Templates

Simulink model templates provide common configuration settings and best practices for new models.
Instead of using the default canvas of a new model, select a template model to help you get started.

For more information on Simulink model templates, see “Build and Edit a Model Interactively”.
Create Model Using Wireless HDL Toolbox Model Template

Click the Simulink button, I.i?'.l, or type simulink at the MATLAB command prompt.

2 On the Simulink start page, find the Wireless HDL Toolbox section, and click the Streaming
Data from MATLAB or Framed Data from MATLAB template.

Wireless ®* | Al VE

v Wireless HDL Toolbox

Streaming Data from MATLAB Framed Data from MATLAB

A new model, with the template contents and settings, opens in the Simulink Editor. Select Save to
save the model.

Alternatively, you can create a new model from the template on the command line. For example:

new system my whdl Fmodel FromTemplate whdl framed data.sltx
open_system my whdl Fmodel

Or:

new _system my whdl Smodel FromTemplate whdl streaming data.sltx
open_system my whdl Smodel

Configure the Simulink Environment for Hardware Design

Wireless HDL Toolbox Model Templates

Both Wireless HDL Toolbox model templates include an empty subsystem, HDL Algorithm. This
subsystem accepts and returns streaming data and accompanying control signals using the
samplecontrolbus. You can design an HDL-targeted algorithm within this subsystem.

The templates also configure the model for HDL code generation. Both templates:

* Configure solver settings equivalent to calling hdlsetup

» Display data rates and data types in the Model Editor

* Create an instance of samplecontrolbus in the workspace (in InitFcn)

The simulation time, input data, and block parameters are defined in the callback function, InitFcn.

To view or edit this function, on the Modeling tab, expand Model Settings and click Model
Properties, and then on the Callbacks tab, click InitFcn*.

Framed Data Template

The Framed Data from MATLAB template imports framed data from the MATLAB workspace,
assuming all frames are the same size. Then, it converts the data to a sample stream by using the
Frame To Samples block.

The output of the HDL Algorithm subsystem is connected to a Samples To Frame block. This block
converts the output back to framed data for export to the MATLAB workspace.

The InitFcn defines placeholder input frames and settings for the Frame Input From Workspace,
Frame To Samples, and Samples To Frame blocks.

The StopFcn applies the valid signal to the output data and creates a single variable in the
workspace.

The model has one data rate for the framed data and a faster data rate for the sample stream. You
can display these rates as different colors in the Simulink model.

double daubia L
| samplein samplelul ——— P sample A f—————————

samgleln sampleCul

elri0ul ==

HOL Algorithm

Streaming Data Template

Use the Streaming Data from MATLAB template when your data stream has different-sized frames.
The InitFcn defines placeholder input frames and uses the whdlFramesToSamples function to
convert framed data to vectors of data and control signals. The From Workspace block imports these
variables to the model.

1-9

1 Model Architecture

To connect to the HDL Algorithm subsystem and any Wireless HDL Toolbox blocks that you add inside
it, the model converts the control signals to the samplecontrolbus type, using the Sample Control
Bus Creator block.

The model exports the streaming data and control signals back to the MATLAB workspace. The
StopFcn uses the whdlSamplesToFrames function to convert them back to framed data.

The model has a single data rate because all signals in the model represent streaming samples.

. double . |+ doutle
sampleln P samplein sampledut
{!’ gamplein gamplelut

Sample Input Sampla Cutput
From To Warkspace
Workspace

start

F— > samplacontrol > samplecontrol
1 . .
el Sampla Control cirl e ctdin it e

Bus Craalor ctriln chriCout

J} ctrlin

Confral Input
From
Workspace

Control Qutput
ﬂld To Workspace

HOL Alganthm

See Also

Blocks
Frame To Samples | Sample Control Bus Creator | Samples To Frame

Functions
whdlFramesToSamples | whdlSamplesToFrames

More About

. “Streaming Sample Interface” on page 1-2

1-10

HDL Code Generation and Verification

2 HDL Code Generation and Verification

HDL Code Generation Support

2-2

You can use Simulink for rapid prototyping of hardware designs. Wireless HDL Toolbox blocks, when
used with HDL Coder™, support HDL code generation. HDL Coder tools generate target-independent
synthesizable Verilog® and VHDL® code for FPGA programming or ASIC prototyping and design.

HDL Code Generation Support in Wireless HDL Toolbox
Most blocks in Wireless HDL Toolbox support HDL code generation.

The following blocks are for simulation only and are not supported for HDL code generation:

* Frame To Samples
* Samples To Frame
* FIL Frame To Samples
* FIL Samples To Frame

Other Blocks Supporting HDL Code Generation

Other MathWorks® products also include blocks supported for HDL code generation that you can use
to build up your design.

In the Simulink library browser, you can find libraries of blocks supported for HDL code generation in
the HDL Coder, Communications Toolbox HDL Support, DSP System Toolbox HDL Support
block libraries, and others.

To create a library of HDL-supported blocks from all your installed products, enter hd11ib at the
MATLAB command line. This command requires an HDL Coder license.

You can also view blocks that are supported for HDL code generation in documentation by filtering
the block reference list. Click Blocks in the blue bar at the top of the Help window, then select the
HDL code generation check box at the bottom of the left column. The blocks are listed in their
respective products. You can use the table of contents in the left column to navigate between
products and categories.

Refer to the "Extended Capabilities > HDL Code Generation" section of each block page for block
implementations, properties, and restrictions for HDL code generation.

HDL Code Generation Support

*Documentation Al

= CON

TENTS

Documentation Home

#« Blocks

Category
DSP System Toolbox

Signal Generation,
Manipulation, and Analysis

Filter Implementation

Transforms and Speciral
Analysis

Statistics and Linear Algebra
Fixed-Point Design

HDL Coder

HDL Verifier

LTE HDL Toolbox

Mixed-Signal Blockset

SerDes Toolbox

SimEvents

Simulink Test

Extended Capability

C/C++ Code Generation

¥| HDL Code Generation

PLC Code Generation

Fixed-Point Conversion

21

10

Examples

Close

34
36

28

Functions Blocks

Apps

DSP System Toolbox — Blocks

n Results are filtered

By Category Alphabetical List

Signal Generation, Manipulation, and Analysis

Signal Operations
Downsample

Repeat

Sample and Hold
Upsample

DC Blocker

Signal Generation
Constant

NCO

NCO HDL Optimized

Sine Wave

Scopes and Data Logging
Spectrum Analyzer

Time Scope

Matrix Viewar

Waterfall

To Workspace

Resample input at lower rate by deleting samples
Resample input at higher rate by repeating values
Sample and hold input signal

Resample input at higher rate by inserting zeros

Block DC component

Generate constant value
Generate real or complex sinusoidal signals
Generate real or complex sinusoidal signals—optimized for HDL code generation

Generate continuous or discrete sine wave

Display frequency spectrum

Display and analyze signals generated during simulation and log signal data to MATLAB
Dizplay matrices as color images

View vectors of data over time

Write data to MATLAB workspace

Streaming Sample Interface in HDL

The streaming sample control bus data type used by Wireless HDL Toolbox blocks is flattened into
separate signals in HDL.

In VHDL, the interface is declared as:

PORT(clk IN std _logic;
reset IN std _logic;
enb IN std _logic;
in@ IN std _logic_vector(7 DOWNTO 0); -- uint8
inl start IN std logic;
inl end IN std logic;
inl valid IN std logic;
outo OUT std logic vector(7 DOWNTO 0); -- uint8
outl start OUT std logic;
outl end OUT std logic;
outl valid OUT std logic
);

In Verilog, the interface is declared as:

2 HDL Code Generation and Verification

2-4

input clk;

input reset;

input enb;

input [7:0] in@®; // uint8
input inl start;

input inl end;

input inl valid;

output [7:0] out®; // uint8
output outl start;

output outl end;

output outl valid;

See Also

More About

“Streaming Sample Interface” on page 1-2
“Generate HDL Code” on page 2-5

Generate HDL Code

Generate HDL Code

You can generate HDL code from subsystems that include blocks supported for HDL code generation,
such as the model in “Verify Turbo Decoder with Streaming Data from MATLAB”. In that example,
you can generate HDL code from the HDL Algorithm subsystem.

To generate HDL code, you must have an HDL Coder license.

Prepare Model

Run hdlsetup to configure the model for HDL code generation. If you started your design using the
Wireless HDL Toolbox Simulink model template, your model is already configured for HDL code
generation.

Generate HDL Code

Right-click the HDL Algorithm subsystem, and select HDL Code > Generate HDL for Subsystem to
generate HDL using the default settings. The output log of this operation is shown in the MATLAB
Command Window, along with the location of the generated files.

To change code generation options, use the HDL Code Generation panes of the Simulink
Configuration Parameters dialog box. For guidance through the HDL code generation process, or to
select a target device or synthesis tool, right-click the HDL Algorithm subsystem, and select HDL
Code > HDL Workflow Advisor.

Alternatively, from the MATLAB Command Window, you can call:

makehdl([modelname '/HDL Algorithm'])

Generate HDL Test Bench

You can select options to generate a test bench in the Simulink Configuration Parameters dialog box
or in the HDL Workflow Advisor.

Alternatively, to generate an HDL test bench from the command line, call:

makehdltb([modelname '/HDL Algorithm'])

See Also

Functions
makehdl | makehdltb

Related Examples

. “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder)
. “Choose a Test Bench for Generated HDL Code” (HDL Coder)

2-5

2 HDL Code Generation and Verification

FPGA-in-the-Loop

2-6

FPGA-in-the-loop (FIL) enables you to run a Simulink simulation that is synchronized with an HDL
design running on an Intel® or Xilinx® FPGA board. This link between the simulator and the board
enables you to verify HDL implementations directly against Simulink or MATLAB algorithms. You can
apply real-world data and test scenarios from these algorithms to the HDL design on the FPGA.

When simulating Wireless HDL Toolbox blocks, you must use a streaming sample interface.
Streaming sample data, while required for hardware implementations of communications systems, is
time-consuming at the FPGA-in-the-loop interface with Simulink.

You can convert from frames to samples and samples to frames either in Simulink or in MATLAB.
Depending on your workflow, you can optimize your FPGA-in-the-loop simulation in one of two ways.

One workflow is a Simulink model that imports framed data from MATLAB. This type of model then
uses the Frame To Samples and Samples To Frame blocks to convert the data format. For FPGA-in-
the-loop, replace these conversion blocks with FIL Frame To Samples and FIL Samples To Frame
blocks.

The other workflow is a Simulink model that imports streaming data from MATLAB. This type of
model goes with a MATLAB script that uses the 1tehdlFrameToSamples and
ltehdlSamplesToFrames functions. For FPGA-in-the-loop, modify your script and Simulink model
so that they pass vectors of data to the FPGA-in-the-loop interface.

When you generate a programming file for a FIL target in Simulink, the tool creates a model to
compare the FIL simulation with your Simulink design. For Wireless HDL Toolbox designs, the FIL
block in that model replicates the sample-streaming interface and sends one sample at a time to the
FPGA. Both these modifications construct vectors that make more efficient use of the interface
between the Simulink model and the FPGA board.

The instructions that follow show how to modify FPGA-in-the-loop models for the “Verify Turbo
Decoder with Streaming Data from MATLAB” and “Verify Turbo Decoder with Framed Data from
MATLAB” workflow examples.

FIL Workflow: Framed Data from MATLAB

Autogenerated FIL Model

The generated model, including the FIL block that interfaces with the FPGA board, is shown for a
model that converts to streaming samples in Simulink. If each sample is represented by multiple
values, then the values are flattened into separate ports for FIL.

FPGA-in-the-Loop

sample
Frame
inframes frams Ta
Samples
Frame Input cirl
From
Workspace

sampileln

elrlln

ToFILSr:

FromFILSrc

samplein sampledut
clrlln cariout
HDOL Algarithm

EEmpIEIn—GE.EImpIEICH.Il
samplaln_1

sE|m|:-I|=.'In_?:'C""ﬂ—s'tart
=

cm'“—ﬂaﬁﬂom and

ctriln_and
ctrlln Vdi&trlDut_valid

HOL Algorithm_fil

ToFILSink

Compare

samghe
Samples
To
Frame
clrl

frame

walid

Ini

Frame Cutput
Ta

Workspacs

The blue ToFILSrc subsystem branches the sample-stream input of the HDL Algorithm block to the
FromFILSrc subsystem. The blue ToFILSink subsystem branches the sample-stream output of the
HDL Algorithm block into the Compare subsystem, where it is compared with the output of the HDL
Algorithm fil block. This setup is slow because the model sends only a single sample, and its
associated control signals, in each packet to and from the FPGA board.

Modified FIL Model

To improve the communication bandwidth with the FPGA board, modify the autogenerated model.
The modified model uses the FIL Frame To Samples and FIL Samples To Frame blocks to send one

frame at a time.

sfixS_En2 [Gx1]

sampleln

5_EnZ [13444x1

slix
inframes

Frams Input
From

Workspace

[1644dx1]

clrlin

sampleconiral

garmpleln
3]

baalean
sarmipleCut
EamglaCul

samplecariral

elrl Cul
alriCut

HDL Algorithm

sampleln

i sampleln_1

-
—
1E44dx

— ! ctriln_sta

YeampleOut f—
_cpriQut_start f—

samplel

amplelngg,

FitiriOut_and f—

EArnple

FIL

Samples

+]
et Frame

- ctrlln_and
g - baalean
ctrlin '.-.=.I|EIl 10ut_wvalid
HOL Algorithm_fi

To create this modified FIL model:

Frame Output

o

Wiorkspace

1 Remove the blue subsystems, and create a branch at the frame input port of the Frame To

Samples block.

2-7

2 HDL Code Generation and Verification

2 Insert the FIL Frame To Samples block before the HDL Algorithm fil block. Insert the FIL
Samples To Frame block after the HDL Algorithm fil block.

3 Set the OQutput frame size on the FIL block to the input frame size.

Runtime Options
Owerclocking factor: | 1 v|
Output frame size: | inframesize v|

4 In the FIL Frame To Samples and FIL Samples To Frame blocks, set the parameters to match the
settings of the Frame To Samples and Samples To Frame blocks.

5 Branch the frame output of the Samples To Frame block for comparison. You can compare the
entire frame at once with a Diff block. Compare the validOut signals using an XOR block.

The input size at the FIL block is the frame size from the input data frames. The vector size of the FIL
block ports does not modify the generated HDL code. It affects only the packet size of the
communication between the simulator and the FPGA board. This modified model sends an entire
frame to the FPGA board in each packet, significantly improving the efficiency of the communication
link.

FIL Workflow: Streaming Data from MATLAB

Autogenerated FIL Model

The generated model, including the FIL block that interfaces with the FPGA board, is shown for a
model that converts to streaming samples in MATLAB. If each sample is represented by multiple
values, then the values are flattened into separate ports for FIL.

2-8

FPGA-in-the-Loop

sampleln - samplaln samplaCut samphaCul_ts
samplsin 58 i
Sample Input Sample Cutput
From To Workspace
Workspace
start
Sample Control
cirlin - end S CE ator ot pre chrln cirlOut _-:I: ctrlCut_ts
Caontrol Input i Control Output
Fram walid To Workspace
Workspace ToFILSrc HOL Algorithm ToFILSink
sampleln_0
sampledut —
sampleln_1
sampleln_2 ctiOut_start —
=
ciriin_start FIL ctrlOut_snd —
cirlin_end
ctlOut_valid —®
cirlin_valid
FromFILSrz HOL Algarithm_fil Compars

The blue ToFILSrc subsystem branches the sample-stream input of the HDL Algorithm block to the
FromFILSrc subsystem. The blue ToFILSink subsystem branches the sample-stream output of the
HDL Algorithm block into the Compare subsystem, where it is compared with the output of the HDL
Algorithm fil block. This setup is slow because the model sends only a single sample, and its
associated control signals, in each packet to and from the FPGA board.

Modified FIL Model

To improve the communication bandwidth with the FPGA board, use the generated FIL block in a
different model. The alternate model imports and exports vectors of flattened data. The
accompanying MATLAB script reshapes the input and output data, and verifies the FIL output against
a behavioral model. Reshaping the data in MATLAB is easier and the simulation is faster than
reshaping in Simulink.

2-9

2 HDL Code Generation and Verification

; E [99x1]
| syslr >
| ; boolean [99x1]
— P sampleOut_ts
x5_En2 [99x1]
plin B
I En2 (90) e boolean [99x1] N— .
| p2In L > ’ I - P ctristartOut_ts
| Arlsl: > boolean [99x1]
| P clrlendOut_ts
I Ll
| ctrlendin P
L boolean [98x1]
| 1 [99x%1] ! - P cirivalidOut_ts
| ctrivalidin P i
L

2-10

First, modify the accompanying MATLAB script:

1

Pick a frame size for the FIL simulation. This size does not have to match the actual frame sizes
in the generated data. It can contain your entire data set. The FIL block divides the data into
maximum size packets for communication with the FPGA board.

filframesize = 99;

Combine the cell array of input frames into one matrix.

allframes = [inframes{:}];

Flatten the samples and control signals so there is one vector for each input port on the FIL
block. This model includes the LTE Turbo Decoder block, so the input samples consist of three
values.

allframes(1:3:end);
allframes(2:3:end);
allframes(3:3:end);

sysIn
plIn
p2In

ctristartIn ctrlIn(1:3:end);
ctrlendIn ctrlIn(2:3:end);
ctrilvalidIn ctrlIn(3:3:end);

Call the FIL model.

simTime = size(allframes,1);

modelname = 'TurboDecoderStreamingFILVectortoSL';
open_system(modelname) ;

sim(modelname);

Reshape the output variables for input to the whd1SamplesToFrames function. Recreate an N-
by-3 control signal matrix and a vector of sample data. In this example, the output sample is a
single value. If the output sample is multiple values, build an N-by-SampleSize sample matrix.

sampleOut = squeeze(sampleOut ts.Data);
ctrlOut = [squeeze(ctrlstartOut ts.Data)

FPGA-in-the-Loop

squeeze(ctrlendOut ts.Data)
squeeze(ctrlvalidOut ts.Data)l;

Then, create a Simulink model:

1 Copy the generated FIL block into a new model.

2 Configure and connect a Signal From Workspace block for each input port on the FIL block. Use
the variables from your MATLAB script as the parameter values.

Parameters

Signal:

|51_,r51n | :

Sample time:

| sampletime/filframesize | ;

Samples per frame:

|ﬂ|fram95ize | :

3 Set the Output frame size on the FIL block to the desired FIL frame size.

Runtime Options
Overclocking factor: | 1 v|
Output frame size: | filframesize e |

4 Configure and connect a To Workspace block for each output port of the FIL block.

The input size at the FIL block is the frame size you specify on the Signal To Workspace blocks. The
vector size of the FIL block ports does not modify the generated HDL code. It affects only the packet
size of the communication between the simulator and the FPGA board. This modified model sends an
entire frame to the FPGA board in each packet, significantly improving the efficiency of the
communication link.

See Also

More About

. “Verify Turbo Decoder with Streaming Data from MATLAB”
. “Verify Turbo Decoder with Framed Data from MATLAB”

2-11

2 HDL Code Generation and Verification

Prototype Wireless Communications Algorithms on Hardware

The Communications Toolbox™ Support Package for Xilinx Zyng-Based Radio enables you to design,
prototype, and verify practical wireless communications systems on Xilinx Zyng-based radio
hardware.

* Use the Xilinx Zyng-based radio as an I/O peripheral to transmit and receive real-time arbitrary
waveforms using MATLAB System objects or Simulink blocks.

« Transmit and receive RF signals out of the box, enabling quick testing of SDR designs under real-
world conditions.

* Transmit and receive data on one or two channels.
* Configure RF radio settings easily.
* Acquire high-bandwidth signals by using burst mode.

* In Simulink, customize and prototype SDR algorithms. Target only the FPGA fabric of the device,
or deploy partitioned hardware-software co-design implementations across the ARM® processor
and the FPGA fabric of the device (Windows® operating system only).

* Run application examples to get started.
The support package provides two workflows:

* FPGA-only targeting - This workflow uses generated HDL code from HDL Coder and HDL Coder
Support Package for Xilinx Zynq Platform.

* Hardware-software co-design - This workflow also uses HDL Coder and HDL Coder Support
Package for Xilinx Zynq Platform. It additionally requires Simulink Coder™, Embedded Coder®,
and Embedded Coder Support Package for Xilinx Zynq Platform.

The “LTE MIB Recovery and Cell Scanner Using Analog Devices AD9361/AD9364” (Communications
Toolbox Support Package for Xilinx Zynqg-Based Radio) support package example shows how to use
the hardware-software co-design workflow to deploy the design from “LTE HDL MIB Recovery” on
page 5-92 to a hardware board with a radio daughter card. The “LTE Receiver Using Analog Devices
AD9361/AD9364” (Communications Toolbox Support Package for Xilinx Zynq-Based Radio) support
package example shows how to capture live LTE data for use in testing your designs.

How to Install Support Packages

A support package is an add-on that enables you to use a MathWorks product with specific third-party
hardware and software. Support packages use the license of the base product. For instance,
Communications Toolbox Support Package for Xilinx Zyng-Based Radio requires a license for
Communications Toolbox.

Install support packages using the MATLAB Add-Ons menu. You can also use the Add-Ons menu to
update installed support package software or update the firmware on third-party hardware.

To install support packages, on the MATLAB Home tab, in the Environment section, click Add-Ons
> Get Hardware Support Packages. You can filter this list by selecting categories (such as
hardware vendor or application area), or by performing a keyword search.

Search the Add-Ons list for Zynq, and install these support packages:

* Communications Toolbox Support Package for Xilinx Zyng-Based Radio

2-12

Prototype Wireless Communications Algorithms on Hardware

* HDL Coder Support Package for Xilinx Zynq Platform
* Embedded Coder Support Package for Xilinx Zynq Platform (only needed for hardware-software
co-design)

When the support package installation is complete, you must set up the host computer and radio
hardware. For Windows systems, the installer provides guided setup steps. For Linux® systems, the
installer links to manual setup instructions.

Design Requirements

The Communications Toolbox Support Package for Xilinx Zyng-Based Radio provides a reference
design that you can use to create an IP core that integrates into the radio hardware. Use the HDL
Workflow Advisor to guide you through generating a shareable and reusable IP core module using the
reference design.

To work with the reference design, your FPGA targeted design must use a streaming data interface
with a control signal that indicates the validity of each sample. Wireless HDL Toolbox blocks provide
this interface. Use the Sample Control Bus Selector block to separate the valid control signal from
the bus.

To deploy a design using the support package, your design must meet these preconditions.

* Each data input or output must be 16 bits. The HDL subsystem that fits into the reference design
does not support complex signals at the ports. To handle complex inputs and outputs, model
separate I and Q ports at the subsystem boundaries.

* Model all the ports for a given reference design, even when the ports are not used.

* In Simulink, the input and output data and valid signals must be driven at the same sample rate.
Therefore, the input and output clock rates of the subsystem must be equal.

* Clock the data and valid signals at the fastest rate of the HDL subsystem.
» For the FPGA-only targeting workflow:
* Duplex operation is not supported. Use either the transmit or the receive operation, but not
both.
* For the hardware-software co-design workflow:

* Duplex operation is supported. You can use both the Transmitter and Receiver blocks in the
same design.

* AXI4-Lite register ports can be clocked at arbitrary rates.

* In single-channel mode, you can transmit or receive data frames containing an even number of
samples only. If you use an odd number of samples, the software inserts a zero sample at the
end of each frame.

The real-time design encounters a larger volume of data and a larger set of state progressions than
you can simulate in Simulink. Make sure to model and generate control logic to handle the restart
between subframes. Consider adding extra subsystem ports for debug visibility of these extended
states once the design is deployed to the board.

Design for Debugging

Once the design is deployed to the board, you have much less visibility of the internal signals in your
design. To improve visibility, you can add temporary output ports to your subsystem before you

2-13

2 HDL Code Generation and Verification

2-14

generate your IP core. Signals that can help with debugging are design state, mux select signals or
other control parameters, and data values at intermediate stages of the data path. You can also add
input ports and muxes to give the option for external control of parameters such as mux select signals
and gain values.

When you simulate the design on the board in External mode, you can drive and view these ports
from Simulink. The Xilinx Zynq AXI Interface block from the generated software model provides a
Simulink interface to the input and output ports of your design while it is running on the board.

Once you are confident that your design is behaving as intended, you can remove these ports and
regenerate the IP core.

Another debugging strategy is to include a known input signal stored in memory on the FPGA. This
memory can be part of the generated HDL code from your Simulink model. The “LTE MIB Recovery
and Cell Scanner Using Analog Devices AD9361/AD9364” (Communications Toolbox Support Package
for Xilinx Zyng-Based Radio) support package example shows an input port externalDataSel that
provides a switch between a stored data set and the live data from the radio.

See Also

More About

. “Communications Toolbox Support Package for Xilinx Zyng-Based Radio”

. “FPGA Targeting Workflow” (Communications Toolbox Support Package for Xilinx Zynq-Based
Radio)

. “Hardware-Software Co-Design Workflow” (Communications Toolbox Support Package for Xilinx

Zyng-Based Radio)
. “LTE HDL MIB Recovery” on page 5-92
. “LTE HDL SIB1 Recovery” on page 5-74

Reference Page Examples

3 Reference Page Examples

Append CRC Checksum to Streaming Data

3-2

This example shows how to use the LTE CRC Encoder block to encode data, and how to compare the
hardware-friendly design with the results from LTE Toolbox™ . The workflow follows these steps:

1 Generate frames of random input samples in MATLAB.

2 Generate and append a CRC checksum using the LTE Toolbox function 1teCRCEncode.

3 Convert framed input data to a stream of samples and import the stream into Simulink®.
4

To encode the samples using a hardware-friendly architecture, run the Simulink model, which
contains the Wireless HDL Toolbox™ block LTE CRC Encoder.

5 Export the stream of bits, which now has an appended CRC checksum, to the MATLAB®
workspace.

6 Convert the sample stream back to framed data, and compare the frames with the reference
frames and checksum.

Generate input data frames. Generate reference output data using 1teCRCEncode.

frameLength = 256;

numframes = 2;

rng(0);

txframes = cell(1,numframes);
txcodeword = cell(1l,numframes);
rxSoftframes = cell(1l,numframes);

for ii = l:numframes
txframes{ii} = randi([0 1], frameLength,1)>0.5;
CRCType '24B';

CRCMask = 50;
txcodeword{ii} = 1teCRCEncode(txframes{ii}, CRCType, CRCMask);

end

Serialize input data for the Simulink model. Leave enough time between frames for each frame to be
fully encoded before the next one starts. For CRC 24 encoding, the checksum adds 24 parity bits at
the end of the frame. The hardware-friendly algorithm also adds CRCLength + 3 cycles of latency.

idleCyclesBetweenSamples = 0;
idleCyclesBetweenFrames = 24+27;
outputSize =1;

[sampleIn,ctrlIn] = whdlFramesToSamples(...
txframes,idleCyclesBetweenSamples, idleCyclesBetweenFrames,outputSize);

Run the Simulink model.

sampletime = 1;

simTime = length(ctrlIn);

modelname = 'ltehdlCRCEncoderModel';
open(modelname);

sim(modelname) ;

Append CRC Checksum to Streaming Data

sampleln

I} sampleOut
book=an boolea
sampleln samplaCut Sample Cutput

To Workspacs

A J

Sample Input

From
Workspac

cirlin

Contral Input

From
Workspac

[l

. nirol

P 3| crlln cirlout =

) E boolaan([3]

: 1’ “etriout
: HDL Algorithm
: ; Control Cutput
: <valid=> To Work

e : Sample Confrol 0 VVorkspace

Bus Selector

bopl=an
b0l CEN

san|facontral
ctrl

d Sample Control

an Bus Creator

e wvalid

The Simulink model exports sampleOut and ctrlOut back to the MATLAB workspace. Deserialize
the output samples, and compare the framed data to the reference data.

txhdlframes = whdlSamplesToFrames(sampleOut,ctrlOut);

fprintf('\nLTE CRC Encoder\n');
for ii = l:numframes
numBitsDiff = sum(double(txcodeword{ii})-double(txhdlframes{ii}));
fprintf([' Frame %d: Behavioral and ' ...
"HDL simulation differ by %d bits\n'], ii, numBitsDiff);
end

Maximum frame size computed to be 280 samples.
LTE CRC Encoder

Frame 1: Behavioral and HDL simulation differ by 0 bits
Frame 2: Behavioral and HDL simulation differ by 0 bits

See Also

Blocks
LTE CRC Encoder

Functions
1teCRCEncode

More About
. “Check for CRC Errors in Streaming Samples” on page 3-4

3-3

3 Reference Page Examples

Check for CRC Errors in Streaming Samples

This example shows how to use the LTE CRC Decoder block to check encoded data, and how to
compare the hardware-friendly design with the results from LTE Toolbox™. The workflow follows
these steps:

1 Generate frames of random input samples in MATLAB.

2 Generate and append the CRC checksum using the LTE Toolbox function 1teCRCEncode.

3 Convert framed input data and checksum to a stream of samples and import it to Simulink®.
4

To check the samples against the checksum using a hardware-friendly architecture, run the
Simulink model. The model contains the Wireless HDL Toolbox™ block LTE CRC Decoder.

Export the stream of samples back to the MATLAB® workspace.

(6,]

6 Convert the sample stream back to framed data, and compare the frames with the reference
data.

Generate input data frames, then generate the CRC checksum using 1teCRCEncode.

frameLength = 256;

numframes = 2;

rng(0);

txframes = cell(1l,numframes);
txcodeword = cell(1l,numframes);
rxSoftframes = cell(1,numframes);

for ii = l:numframes
txframes{ii} = randi([0 1], frameLength,1)>0.5;
CRCType '24B';

CRCMask = 50;
txcodeword{ii} = boolean(lteCRCEncode(txframes{ii},CRCType,CRCMask));

end

Serialize input data for the Simulink model. The LTE CRC Decoder block does not require any space
between frames, but the hardware-friendly algorithm adds latency of (3 * CRCLength / SampleSize) +
5 cycles. This example uses scalar input samples, so the latency is (3 * CRCLength) + 5.

idleCyclesBetweenSamples = 0;
idleCyclesBetweenFrames = 77;
samplesizeln =1;

[sampleIn,ctrlIn] = whdlFramesToSamples(...
txcodeword,idleCyclesBetweenSamples, idleCyclesBetweenFrames,samplesizeln);

Run the Simulink model.

sampletime = 1;

simTime = length(ctrlIn);

modelName = 'ltehdlCRCDecoderModel’;
open_system(modelName) ;
sim(modelName) ;

3-4

Check for CRC Errors in Streaming Samples

boolean sampleCut »| sampleCut
sampleln | samplein _
e [fomdraian Sample Output
Sample Input : waslerz To Waorkspace
Fem 0 B
. ; ctrin boolean |
Waorkspace start : arrCiut] S ctrlOut
- 3
beceblean : HOL Algorithm) <valid= Control Cutput
boobaan [1 aan :lamplecontral ample Control Tio Work
Sample Control : P o WWorkepace
cirlin T} end™ g Cregtor S Bus Selector
E:Dnl'.:rol Input » emrDut
rmam valid
Workspace

The Simulink model exports sampleOut and ctrlQut back to the MATLAB workspace. Deserialize
the output samples, and compare the framed data to the input frames.

txhdlframes = whdlSamplesToFrames(sampleOut,ctrlOut);

fprintf('\nLTE CRC Decoder\n');
for ii = l:numframes
numBitsDiff = sum(double(txframes{ii})-double(txhdlframes{ii}));
fprintf([' Frame %d: Behavioral and '
"HDL simulation differ by %d bits\n'], ii, numBitsDiff);
end

Maximum frame size computed to be 256 samples.
LTE CRC Decoder

Frame 1: Behavioral and HDL simulation differ by 0 bits
Frame 2: Behavioral and HDL simulation differ by 0 bits

See Also

Blocks
LTE CRC Decoder

Functions
1teCRCDecode

More About
. “Append CRC Checksum to Streaming Data” on page 3-2

3-5

3 Reference Page Examples

Turbo Encode Streaming Samples

3-6

This example shows how to use the LTE Turbo Encoder block to encode data, and how to compare the
hardware-friendly design with the results from LTE Toolbox™. The workflow follows these steps:
Generate frames of random input samples in MATLAB®.

Encode the data using the LTE Toolbox function 1teTurboEncode.

Convert framed input data to a stream of samples and import the stream into Simulink®.

A W N R

To encode the samples using a hardware-friendly architecture, run the Simulink model, which
contains the Wireless HDL Toolbox™ block LTE Turbo Encoder.

Export the stream of encoded samples to the MATLAB workspace.
6 Convert the sample stream back to framed data, and compare the frames with the reference
data.

Generate input data frames. Generate reference encoded data using LteTurboEncode.

rng(o);
turboframesize = 40;
numframes = 2;

txBits
codedData

cell(1,numframes);
cell(1,numframes);

for ii = l:numframes
txBits{ii} = logical(randi([0® 1],turboframesize,l));
codedData{ii} = lteTurboEncode(txBits{ii});

end

Serialize input data for the Simulink model. Leave enough time between frames for each frame to be
fully encoded before the next one starts. The LTE Turbo Encoder block takes inframesize + 16
cycles to complete encoding of a frame.

inframes = txBits;
inframesize = size(inframes{1l},1);

idlecyclesbetweensamples = 0;
idlecyclesbetweenframes = inframesize+16;

[sampleIn,ctrlIn] = ...
whdlFramesToSamples (inframes,
idlecyclesbetweensamples,
idlecyclesbetweenframes);

Run the Simulink model. The simulation time equals the number of input samples. Because of the
added idle cycles between frames, the streaming input data includes enough cycles for the model to
complete encoding of both frames.

sampletime = 1;

samplesizeln = 1;

simTime = size(ctrlIn,l);

modelname = 'ltehdlTurboEncoderModel’;
open_system(modelname) ;
sim(modelname) ;

Turbo Encode Streaming Samples

boodaan boodzan (3)
sampleln | samplain sampleCiut > sampleOut
sampleln sampleCut 3
Sample Input Sample Cutput
From To Waorkspace
Workspace
start " boolean
h
b h e Co samplecontrol sampl :hfdﬁ“th—"]b:-:-ean (3
cirlin . mlend Sample "-"-_ntrc' cirl = F cidin cirlOut === Y - ! » ctriOut
[f=3] Bus Creator ctriln ctrOut Lg.grg;n '_..J 3
Control Input — Control Cutput
walid <yalid= e
. From Sample Contral To Workspace
Yorkspace HOL Algorithm Bus Selector

The Simulink model exports sampleOut ts and ctrlOut_ ts back to the MATLAB workspace.
Deserialize the output samples, and compare the framed data to the reference encoded frames.

The output samples of the LTE Turbo Encoder block are interleaved with the parity bits.
Hardware-friendly output: S 1 P1 1 P2 1 S2 P1 2 P2 2 ... Sn P1. n P2 n
LTE Toolbox output: S 1 S 2 ... SnP11P12 ... PLnP21P22...P2n

Reorder the samples using the interleave option of the whd1SamplesToFrames function. Compare
the reordered output frames with the reference encoded frames.

sampleOut = sampleQut';
interleaveSamples = true;
outframes = whdlSamplesToFrames(sampleQut(:),ctrlOut,[],interleaveSamples);

fprintf('\nLTE Turbo Encoder\n');
for ii = 1l:numframes
numBitsDiff = sum(outframes{ii} ~= codedData{ii});
fprintf([' Frame %d: Behavioral and ' ...
"HDL simulation differ by %d bits\n'],ii,numBitsDiff);
end

Maximum frame size computed to be 132 samples.
LTE Turbo Encoder

Frame 1: Behavioral and HDL simulation differ by 0 bits
Frame 2: Behavioral and HDL simulation differ by 0 bits

See Also

Blocks
LTE Turbo Encoder

Functions
lteTurboEncode

More About

. “Turbo Decode Streaming Samples” on page 3-8

3 Reference Page Examples

Turbo Decode Streaming Samples

3-8

This example shows how to use the LTE Turbo Decoder block to decode data, and how to compare
the hardware-friendly design with the results from LTE Toolbox™.

1 Generate frames of random input samples in MATLAB®. Encode the samples and add noise to
the data.

2 Decode the data using the LTE Toolbox function, 1teTurboDecode.
Convert framed input data to a stream of samples and import the stream into Simulink®.

To decode the samples using a hardware-friendly architecture, execute the Simulink model,
which contains the LTE Turbo Decoder block.

5 Export the stream of decoded bits to the MATLAB workspace.

Convert the sample stream back to framed data, and compare the frames with the decoded
frames from Step 2.

Generate input data frames. Turbo encode the data, modulate the message, and add noise to the
resulting constellation. Demodulate the noisy constellation and generate soft bit values. Generate
reference decoded data using LteTurboDecode. For the hardware-friendly model, convert the soft
bits into a fixed-point data type.

rng(o);
numframes = 2;

txBits = cell(1,numframes);
softBits = cell(1l,numframes);
rxBits = cell(1,numframes);
inframes = cell(1l,numframes);

for ii = l:numframes
txBits{ii} = randi([0 1]1,6144,1);
codedData lteTurboEncode(txBits{ii});
txSymbols = lteSymbolModulate(codedData, 'QPSK");
noise = 0.5*complex(randn(size(txSymbols)),randn(size(txSymbols)));
rxSymbols = txSymbols + noise;
softBits{ii} = lteSymbolDemodulate(rxSymbols, 'QPSK', 'Soft"');
rxBits{ii} = lteTurboDecode(softBits{ii});
inframes{ii} = fi(softBits{ii},1,5,2);
end

Serialize input data for the Simulink model. Leave enough time between frames for each frame to be
fully decoded before the next one starts. The LTE Turbo Decoder block takes 2 *
numTurboIterations * HalflterationLatency + (inframesize / samplesizeIn) cycles to
complete decoding of a frame. For details of the HalfIterationLatency calculation see the Turbo
Decoder block reference page.

The LTE Turbo Decoder block expects input samples are interleaved with the parity bits.
Hardware-friendly input: S 1 P1 1 P2 1 S2 P1 2 P2 2 ... Sn P1 n P2 n
LTE Toolbox input: S 1 S 2 ... SnP1 1Pl 2 ...PLnP21P22...P2n

Reorder the samples using the interleave option of the whdlFramesToSamples function.

inframesiz

e = size(inframes{1},1); %includes 4 tail bit samples
encoderrate = 3;

% rate 1/3 Turbo code

Turbo Decode Streaming Samples

samplesizelIn = encoderrate; % 3 samples in at a time

idlecyclesbetweensamples = 0;

outframesize = size(txBits{1l},1);

numTurboIterations = 6;

halfIterationLatency = (ceil(outframesize/32)+3)*32; % window size=32

algframedelay = 2*numTurboIterations*halflterationLatency+(inframesize/samplesizeln);
idlecyclesbetweenframes = algframedelay;

interleaveSamples true;
[sampleIn,ctrlIn] C.
whdlFramesToSamples (inframes,
idlecyclesbetweensamples,
idlecyclesbetweenframes,
samplesizeln,
interleaveSamples);

Run the Simulink model. The simulation time equals the number of input samples. Because of the
added idle cycles between frames, the streaming input data includes enough cycles for the model to
complete decoding of both frames.

sampletime = 1;

simTime = size(ctrlIn, 1);

modelname = 'ltehdlTurboDecoderModel’;
open_system(modelname) ;

sim(modelname) ;
sfixh_En? [3x1] boolaan
samplaln | samplain sampleOut o sampleCut
samplaln [3,«.1'_ sampladut
Sample Input Sample Cutput
From To Workspacs
Workspace

cirlin

start olaan

L

h Samole Contro samplacontral 5awplec[e .‘—"-| boodaan (3)

hend = - ot cirin i Out feme b » ctrlOut

Control [nput

(o

From
Morkspace

Bus Creator o FTe —fﬂ!‘-!'Ea" J ’

[— i Contrel Cutput

e Sample C{n\;!’lgl To Workepace
HOL Algorithm Bus Selector

The Simulink model exports sampleOut and ctrl0ut back to the MATLAB workspace. De-serialize
the output samples, and compare to the decoded frame.

outframes = whdlSamplesToFrames (sampleOut,ctrlOut);

fprintf('\nLTE Turbo Decoder\n');
for ii = 1l:numframes
numBitsDiff = sum(outframes{ii} ~= rxBits{ii});
fprintf([' Frame %d: Behavioral and '
'"HDL simulation differ by %d bits\n'],ii,numBitsDiff);
end

Maximum frame size computed to be 6144 samples.

LTE Turbo Decoder

3 Reference Page Examples

Frame 1: Behavioral and HDL simulation differ by 0 bits
Frame 2: Behavioral and HDL simulation differ by 0 bits

See Also

Blocks
LTE Turbo Decoder

Functions
lteTurboDecode

More About

. “Turbo Encode Streaming Samples” on page 3-6

3-10

Convolutional Encode of Streaming Samples

Convolutional Encode of Streaming Samples

This example shows how to use the LTE Convolutional Encoder block to encode data, and how to
compare the hardware-friendly design with the results from LTE Toolbox™. The workflow follows
these steps:

Generate frames of random input samples in MATLAB®.

Encode the data using the LTE Toolbox function 1teConvolutionalEncode.

Convert framed input data to a stream of samples and import the stream into Simulink®.

A W N -

To encode the samples using a hardware-friendly architecture, run the Simulink model, which
contains the Wireless HDL Toolbox™ block LTE Convolutional Encoder.

Export the stream of encoded bits to the MATLAB workspace.
Convert the sample stream back to framed data, and compare the frames with the reference
data.

Generate input data frames. Generate reference encoded data using LteConvolutionalEncode.

rng(o);

frameLength = 256;

numframes = 2;

txframes = cell(1,numframes);
txcodeword = cell(1,numframes);
rxSoftframes = cell(1l,numframes);

for k = l:numframes
txframes{k} = randi([0 1], frameLength,1)>0.5;
txcodeword{k} = lteConvolutionalEncode(txframes{k});
end

Serialize input data for the Simulink model. Leave enough time between frames so that each frame is
fully encoded before the next one starts. The block takes frameLength + 5 cycles to encode the

frame.
idleCyclesBetweenSamples = 0;
idleCyclesBetweenFrames = frameLength+5;

[sampleIn,ctrlIn] = whdlFramesToSamples(...
txframes,idleCyclesBetweenSamples,idleCyclesBetweenFrames);

Run the Simulink model. Because of the added idle cycles between frames, the streaming input data
includes enough cycles for the model to complete encoding of both frames.

sampletime = 1;

samplesizeln = 1;

simTime = size(ctrlIn,1);

modelname = 'ltehdlConvolutionalEncoderModel";
open_system(modelname);

sim(modelname);

3-11

3 Reference Page Examples

sampleln

Sample Input
From
Workspace

Contral Input
From
Workspace

3-12

sampleCut

\—b samplain samplaCut

start
- 5
[)EepEan T o cilOut b=
. =3 Sample Control samg; [

o | end Bus Creator ctrl

: —‘ HDL Algorithm
I

| valid

Sample Output
To Warkspace

:lt—ein ctriOut

Control Output
To Workspace

h

r

Sample Contral
Bus Selector

The Simulink model exports sampleOut and ctrl0ut back to the MATLAB workspace. Deserialize
the output samples, and compare them to the encoded frame.

The output samples of the LTE Convolutional Encoder block are the interleaved results of the three
polynomials.

* Hardware-friendly output: G0 1 G1 1 G2 1 GO 2 G1 2 G2 2 ... Gn G1 n G2 n
* LTE Toolbox output: G0 1 GO 2 ... GO n G1. 1 Gl 2 ... Gl nG21G22...G2n

The whd1lSamplesToFrames function provides an option to reorder the samples. Compare the
reordered output frames with the reference encoded frames.

interleaveSamples = true;
sampleOut = sampleOQut';
txhdlframes = whdlSamplesToFrames(sampleOut(:),ctrlOut,[],interleaveSamples);

fprintf('\nLTE Convolutional Encoder\n');
for k = 1l:numframes
numBitsDiff = sum(double(txcodeword{k})-double(txhdlframes{k}));
fprintf([' Frame %d: Behavioral and ' ...
'"HDL simulation differ by %d bits\n'],k,numBitsDiff);
end

Maximum frame size computed to be 768 samples.
LTE Convolutional Encoder

Frame 1: Behavioral and HDL simulation differ by 0 bits
Frame 2: Behavioral and HDL simulation differ by 0 bits

See Also

Blocks
LTE Convolutional Encoder

Functions
lteConvolutionalEncode

More About

. “Convolutional Decode of Streaming Samples” on page 3-13

Convolutional Decode of Streaming Samples

Convolutional Decode of Streaming Samples

This example shows how to use the LTE Convolutional Decoder block to decode data, and how to
compare the hardware-friendly design with the results from LTE Toolbox™. The workflow follows
these steps:

Generate LTE convolutionally encoded messages in MATLAB®, using LTE Toolbox.

2 (Call Communications Toolbox™ functions to perform BPSK modulation, transmission through an
AWGN channel, and BPSK demodulation. The result is soft-bit values that represent log-
likelihood ratios (LLRs).

3 Quantize the soft bits according to the signal-to-noise ration (SNR).
Convert framed input data to a stream of samples and import the stream into Simulink®.

5 To decode the samples using a hardware-friendly architecture, execute the Simulink model,
which contains the LTE Convolutional Decoder block.

Export the stream of decoded bits to the MATLAB workspace.

Convert the sample stream back to framed data, and compare the frames with the original input
frames.

Calculate the channel SNR and create the modulator, channel, and demodulator System objects. EbNo
is the ratio of energy per uncoded bit to noise spectral density, in dB. EcNo is the ratio of energy per
channel bit to noise spectral density, in dB. The code rate of the convolutional encoder is 1/3.
Therefore each transmitted bit contains 1/3 of a bit of information.

EbNo
EcNo

10;
EbNo - 10*1ogl0(3);

modulator = comm.BPSKModulator;
channel = comm.AWGNChannel('EbNo',EcNo);
demodulator = comm.BPSKDemodulator('DecisionMethod', 'Log-likelihood ratio');

Generate input data frames. Encode the data, modulate the message, and add channel effects to the
resulting constellation. Demodulate the transmitted constellation and generate soft-bit values. For the
hardware-friendly model, convert the soft bits into a fixed-point data type. The optimal soft-bit
quantization step size is a function of the noise spectral density, No.

rng(0);
messageLength = 100;
numframes = 2;
numSoftBits = 5;

txMessages = cell(1,numframes);
rxSoftMessages = cell(1l,numframes);

No = 10" ((-EcNo)/10);
quantStepSize = sqrt(No/2”numSoftBits);

for k = l:numframes

txMessages{k} = randi([0 1],messageLength,l,'int8");
txCodeword = lteConvolutionalEncode(txMessages{k});

modOut
chanOut

modulator.step(txCodeword) ;
channel.step(modOut);

3-13

3 Reference Page Examples

demodOut = -demodulator.step(chanOut)/4;

rxSoftMessagesDouble = demodOut./quantStepSize;
rxSoftMessages{k} = fi(rxSoftMessagesDouble,1l,numSoftBits,0);

end

Serialize input data for the Simulink model. Leave enough time between frames so that each frame is
fully decoded before the next one starts. The LTE Convolutional Decoder block takes (2 *
messagelength) + 140 cycles to complete decoding of a frame.

The LTE Convolutional Decoder block expects the input data to contain the three encoded bits

interleaved.
* Hardware-friendly input: GO 1 G1 1 G2 1 GO 2 G1 2 G2 2 ... GO n Gl n G2 n
* LTE Toolbox input: G0 1 GO 2 ... GO n G1 1G1 2 ... Gl nG21G22...G2n

idleCyclesBetweenSamples
idleCyclesBetweenFrames
samplesizeln
interleaveSamples

0;

* messagelLength + 140;
3;
true;

[sampleIn,ctrlIn] = whdlFramesToSamples(rxSoftMessages, ...
idleCyclesBetweenSamples, ...
idleCyclesBetweenFrames, ...
samplesizeln, ...
interleaveSamples);

Run the Simulink model. Because of the added idle cycles between frames, the streaming input
variables include enough cycles for the model to complete decoding of both frames.

sampletime= 1;

simTime = size(ctrlIn,l);

modelname = 'ltehdlConvolutionalDecoderModel';
open(modelname);

sim(modelname);

[= »| ctriOut

samplaln __:': = —pzampletn anplecut i »| sampleOut

&

=

The Simulink model exports sampleOut and ctrlQut back to the MATLAB workspace. Deserialize
the output samples, and compare to the decoded frame.

rxMessages = whdlSamplesToFrames(sampleOut,ctrlOut);
fprintf('\nLTE Convolutional Decoder\n');

for k = 1l:numframes
numBitsDiff = sum(double(txMessages{k})-double(rxMessages{k}));

3-14

Convolutional Decode of Streaming Samples

fprintf([' Frame %d: Behavioral and '
"HDL simulation differ by %d bits\n'], k, numBitsDiff);
end

Maximum frame size computed to be 100 samples.
LTE Convolutional Decoder

Frame 1: Behavioral and HDL simulation differ by 0 bits
Frame 2: Behavioral and HDL simulation differ by 0 bits

See Also

Blocks
LTE Convolutional Decoder

Functions
lteConvolutionalDecode

More About

. “Convolutional Encode of Streaming Samples” on page 3-11

3-15

3 Reference Page Examples

Descrambling with Gold Sequence Generator

This example shows how to use the LTE Gold Sequence Generator block to implement an LTE
descrambler.

The example model generates random I-Q pairs, multiplies the I and Q components with a generated
Gold sequence, and interleaves the I and Q into a single data stream.

You can generate HDL from the HDL Descrambler subsystem.

symbolsOut b————————]
doubl boolean
| 010 I—;] bookean I—b oad
ufix31

503 ———p init

boolean
validOut ——— =
boolean ~ alidCut —

«8_En ' sfix11_Enf

Sombals Generator

(1

The LTE Gold Sequence Generator block has no block parameters. It is configured to match the
polynomial and shift length required by LTE standard TS 36.212. You must initialize the sequence
with a 31-bit value on the init port, and load the value into the block by setting the load signal to 1
for one cycle. The enable signal generates the Gold sequence values. The output valid signal
indicates when the output is available.

Descrambler

siixd_End

D sfixd_Eni (g} ‘@@b . |sxto Ens | Tz sfix10_EnG N
m

symbalsin J—’ [

iz .sﬁ:z B
e
bookean [oo ’—| e symbalsOut
2 r—— st oolean L s 4Dsﬁ=|U_EnE T i | swin E
oad .—b z +
GO kil | LTE Gold Sequence 2
- Generator NRZ Conversion

init
boolean boolean

fid sfix2
gavle val 4;-

enable

sfinl1_EnG

Gald Sequence Generator

1 boolean
» Z (2

validOut

You can add data logging on the signals and use the Logic Analyzer to view the waveforms.

3-16

Descrambling with Gold Sequence Generator

4 Logic Analyzer — O *

LOGIC ANALYZER TRIGGER B 'Eé 9

L d ¢ ® g @a@ ¢ ©®@ o @
Add Add Add Previous Mext Tl Delete U @[Stepping Run Step Stop Find Settings
Divider Group Cursor Transition Transition Opticns Forward -

]

EDIT CURSORS ZOOM & PAN SIMULATE FIND GLOBAL
symbolsin 0+0i
0
117
0
0

05s/0s]
|

To generate and check the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, use the following command:

makehdl('1ltehdlGoldDescramblerModel/HDL Descrambler')

To generate a test bench, use the following command:

makehdltb('ltehdlGoldDescramblerModel/HDL Descrambler')

See Also

Blocks
LTE Gold Sequence Generator

3-17

3 Reference Page Examples

Parallel Gold Sequence Generation

3-18

This example shows how to use the LTE Gold Sequence Generator block to generate multiple
sequences in parallel for use in channel estimation.

The example model initializes the LTE Gold Sequence Generator block with a vector that represents
the init values for each of four channels. The block returns four independent Gold sequences.

You can generate HDL from the HDL Gold Sequence Generator subsystem.

diouibla boodean | _ Jboolaan (4) —
[10] P Booksan » *—
Load —
double boodean | _ [boclean —
[omes(1,200) 0] P bookean | 2 2 =—]
ﬁ Enable HOL Gold Sequence Generator

The LTE Gold Sequence Generator block has no block parameters. It is configured to match the
polynomial and shift length required by LTE standard TS 36.212. You must initialize the sequence
with a 31-bit value on the init port, and load the value into the block by setting the load signal to 1
for one cycle. This model has four init values, representing four channels.

The enable signal generates the Gold sequence values. The output is a vector of four values. The
output valid signal indicates when the output data is available.

(1 ;:-D-:Ean #] load bookean (4) (I_)

data
ufixd1 (4] LTE Gaold Sequence

Generator

[1x4]

L

init

Dae20aan

:2 boodean Eable valid 5‘@

Gold Sequence Generator

N

You can add data logging on the signals and use the Logic Analyzer to view the waveforms.

Parallel Gold Sequence Generation

=] Logic Analyzer

LOGIC ANALYZER TRIGGER

mP
B
(]

- n
= [€ & gus cag ¢ @ B o @
Add Add Add Previous Next 1] Delete | &) & [#] Stepping Run Step Stop Find Seftings
Divider Group Cursor Transition Transition Options Forward w
EDIT CURSORS ZOOM & PAN SIMULATE FIND GLOBAL a

load
Yinit {35480 30 6B35 6873

To generate and check the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, use the following command:

makehdl('ltehdlGoldVectorModel/HDL Gold Sequence Generator')

To generate a test bench, use the following command:

makehdltb('ltehdlGoldVectorModel/HDL Gold Sequence Generator')

See Also

Blocks
LTE Gold Sequence Generator

3-19

3 Reference Page Examples

LTE OFDM Demodulation of Streaming Samples

This example shows how to use the LTE OFDM Demodulator block to return the LTE resource grid
from streaming samples. You can generate HDL code from this block.

Generate input LTE OFDM symbols using LTE Toolbox™. Select a reference channel based on
NDLRB, and specify the type of cyclic prefix.

enb = 1teRMCDL('R.5");

enb.TotSubframes = 1;

enb.CyclicPrefix = 'Normal'; % or 'Extended'
% NDLRB | Reference Channel

% 6 | R.4

% 15 | R.5

% 25 | R.6

% 50 | R.7

% 75 | R.8

% 100 | R.9

[waveform,LTEGrid,info] = 1teRMCDLTool(enb,[1;0;0;1]);

%%In this example, the Input data sample rate parameter is set to |Use

% maximum input data sample rate|. Hence, the LTE OFDM Demodulator block
% expects input samples at 30.72 MHz sample rate to correspond to the

% size of the FFT. The sample rate of |waveform| depends on NDLRB,

% so the generated waveform might be at a lower rate. To generate

% a test waveform, upsample the signal to 30.72 MHz, normalize the power,
% and add noise. Scale the signal magnitude to be in the range -1 to 1 for
% easy conversion to fixed-point types.

FsRx = 30.72e6;

FsTx = info.SamplingRate;

% NDLRB | Sampling Rate (MHz)
% 1) 6 | 1.92

% 2) 15 | 3.84

% 3) 25 | 7.68

% 4) 50 | 15.36

% 5) 75 | 30.72

% 6) 100 | 30.72

tx = resample(waveform,FsRx,FsTx);

avgTxPower = (tx' * tx) / length(tx);

tx = tx / sqrt(avgTxPower);

n=0.1* complex(randn(length(tx),1),randn(length(tx),1));
rx tx + n;

rx 0.99 * rx / max(abs(rx));

Use an LTE Toolbox function as a behavioral reference for the OFDM demodulation. Downsample the
test waveform to the actual sample rate for the selected NDLRB. Then, compensate for the scale
factor that results from the difference in FFT sizes.

3-20

LTE OFDM Demodulation of Streaming Samples

refInput = resample(rx,FsTx,FsRx);
refGrid = 1teOFDMDemodulate(info, refInput);

refGrid = refGrid * FsRx/FsTx;

Set up the Simulink™ model input data. Convert the test waveform to a fixed-point data type to model
the result from a 12-bit ADC. The Simulink sample time is 30.72 MHz.

The Simulink model imports the sample stream dataIn and validIn, the input parameters NDLRB
and cyclicPrefixType, and the variable stopTime.

NDLRB = info.NDLRB;

if strcmp(info.CyclicPrefix, 'Normal')
cyclicPrefixType = false;

else
cyclicPrefixType = true;

end

sampling time = 1/FsRx;
dataIn = fi(rx,1,12,11);
validIn = true(length(dataIn),1l);

Calculate the Simulink simulation time, accounting for the latency of the LTE OFDM Demodulator
block. The latency of the FFT is fixed because the block uses a 2048-point FFT. Assume the maximum
possible latency of the cyclic prefix removal and subcarrier selection operations. The simulation must
run long enough to apply the input data, plus the latency of the final input symbol.

FFTlatency = 4137;

CPRemove max = 512; % extended CP

carrierSelect max = 424; % NDRLB 100

stopTime = sampling_time*(length(dataIn)+CPRemove max+FFTlatency+carrierSelect max);

Run the Simulink model. The model imports the dataIn and validIn structures and returns
dataOut and validOut.

modelname = 'LTEOFDMDemodulatorExample’;
open(modelname)

set param(modelname, 'SampleTimeColors','on');

set _param(modelname, 'SimulationCommand', 'Update');
sim(modelname)

p sfu12_Ent1 (c} D1
dataln »|1
Isf23_En1 (c) D1 jouble (c) D1
1 = '-} double }—b‘ dataOut |

booizan D1 F
wvalidin

Input parameters

; bociean D1
P il » validOut

- gouple D1 uint16 D1 LTE OFDM Demodulatar
NOLRB | uint16

Compare the output of the Simulink model against the behavioral results, and calculate the SQNR of
the HDL-optimized LTE OFDM Demodulator block.

rxgridSimulink = dataOut(validOut);
figure('units', 'normalized’, 'outerposition',[0 0 1 1])

subplot(2,1,1)
plot(real(refGrid(:)))

3-21

3 Reference Page Examples

3-22

hold on

plot(squeeze(real(rxgridSimulink)))

legend('Real part of behavioral waveform', 'Real part of HDL-optimized waveform')
title('Comparison of LTE Time-Domain Downlink Waveform')

xLlabel('0OFDM Subcarriers")

ylabel('Real Part of Time-Domain Waveform')

subplot(2,1,2)

plot(imag(refGrid(:)))

hold on

plot(squeeze(imag(rxgridSimulink)))

legend('Imag part of behavioral waveform', 'Imag part of HDL-optimized waveform')
title('Comparison of LTE Time-Domain Downlink Waveform')

xlabel('OFDM Subcarriers')

ylabel('Imag Part of Time-Domain Waveform')

sqnrRealdB
sqnrImagdB

10*1logl0(var(real(rxgridSimulink))/abs(var(real(rxgridSimulink))-var(real(refGrid(:
10*1logl0(var(imag(rxgridSimulink))/abs(var(imag(rxgridSimulink))-var(imag(refGrid(:

fprintf('\n LTE OFDM Demodulator: \n SQNR of real part is %.2f dB',sqnrRealdB)
fprintf('\n SQNR of imaginary part is %.2f dB\n',sqnrImagdB)

LTE OFDM Demodulator:
SQNR of real part is 25.98 dB
SQNR of imaginary part is 23.23 dB

LTE OFDM Demodulation of Streaming Samples

Comparison of LTE Time-Domain Downlink Waveform
T T T T

Real part of behavioral waveform

— Real part of HDL-optimized waveform

) Ll

-40

Real Part of Time-Domain Waveform
(=3

60
0 500 1000 1500 2000 2500 3000
OFDM Subcarriers
Comparison of LTE Time-Domain Downlink Waveform
80 T T T T T

—Imag part of behavioral waveform
—Imag part of HDL-oplimized waveform

I

Imag Part of Time-Domain Waveform

0 500 1000 1500 2000 2500 3000
OFDM Subcarriers
See Also
Blocks

LTE OFDM Demodulator

3-23

3 Reference Page Examples

Reset and Restart LTE OFDM Demodulation

3-24

This example shows how to recover the LTE OFDM Demodulator block from an unfinished LTE cell.
The input data is truncated to simulate the loss of a signal or a reset from the upstream parts of the
receiver. The example model uses the reset signal to clear the internal state counters of the LTE
OFDM Demodulator block and then restart calculations on the next cell. In this example, the Input
data sample rate parameter of LTE OFDM Demodulator is set to Use maximum input data sample
rate. So, the base sampling rate of the block is 30.72 MHz.

Generate two input LTE OFDM cells that use different NDLRBs or different types of cyclic prefix.
Upsample both waveforms to the base sampling rate of 30.72 MHz.

enbl = 1teRMCDL('R.9"');

enbl.TotSubframes = 1;

enbl.CyclicPrefix = 'Normal'; % or 'Extended'
[waveforml,gridl,infol] = 1teRMCDLTool(enbl,[1;0;0;1]);

enb2 = 1teRMCDL('R.6"');

enb2.TotSubframes = 1;

enb2.CyclicPrefix = 'Normal'; % or 'Extended'
[waveform2,grid2,info2] = 1teRMCDLTool(enb2,[1;0;0;1]);

FsRx = 30.72e6;
tx1 resample(waveforml,FsRx,infol.SamplingRate);
tx2 resample(waveform2,FsRx,info2.SamplingRate);

Truncate the first waveform two-thirds through the cell. Concatenate the shortened cell with the
second generated cell, leaving some invalid samples in between. Add noise, and scale the signal
magnitude to be in the range [-1, 1] for easy conversion to fixed point.

tx1l = tx1(1:2*length(tx1)/3);
Lgapl 3000;

Lgap2 10000;
rx = [zeros(Lgapl,1); tx1; zeros(Lgap2,1); tx2];

L = length(rx);
rx = rx + 2e-4*complex(randn(L,1l),randn(L,1));

dataIn fp = 0.99*rx/max(abs(rx));

The LTE OFDM Demodulator block maintains internal counters of subframes within each cell. The
block requires a reset after an incomplete cell to clear the counters before it can correctly
demodulate subsequent cells. Create a reset pulse signal at the end of the first waveform.

Reset and Restart LTE OFDM Demodulation

resetIndex = Lgapl + length(txl);
resetIn = false(length(rx),1);
resetIn(resetIndex) = true;

Set up the Simulink™ model input data. Convert the test waveform to a fixed-point data type to model
the result from a 12-bit ADC. The Simulink sample time is 30.72 MHz.

The Simulink model imports the sample stream dataln and validIn, the input parameters NDLRB
and cyclicPrefixType, the reset signal resetIn, and the simulation length stopTime.

dataln = fi(dataIn fp,1,12,11);

validIn = [false(Lgapl,1l); true(length(tx1),1); false(Lgap2,1); true(length(tx2),1)];
validIn(resetIndex+1l:Lgapl+length(tx1l)) = false;

NDLRB = uintl6([infol.NDLRB*ones(Lgapl + length(tx1l),1); info2.NDLRB*ones(Lgap2 + length(tx2),1)

cpTypel = strcmp(infol.CyclicPrefix, 'Extended');
cpType2 = strcmp(info2.CyclicPrefix, 'Extended');
cyclicPrefixType = [repmat(cpTypel,Lgapl + length(tx1l),1); repmat(cpType2,Lgap2 + length(tx2),1)

Calculate the Simulink simulation time, accounting for the latency of the LTE OFDM Demodulator
block. The latency of the FFT is fixed because the block uses a 2048-point FFT. Assume the maximum
possible latency of the cyclic prefix removal and the subcarrier selection operations.

FFTlatency = 4137;
CPRemove max = 512; % extended CP
carrierSelect max = 424; % NDRLB 100

sampling time = 1/FsRx;
stopTime = sampling time*(length(dataIn) + CPRemove max + FFTlatency + carrierSelect max);

Run the Simulink model. The model imports the dataIn and validIn structures and returns
dataOut and validOut.

modelname = 'LTEOFDMDemodResetExample';
open(modelname)

set param(modelname, 'SampleTimeColors', 'on');

set param(modelname, 'SimulationCommand', 'Update');
sim(modelname)

sfe12_En11 (c} D1
dataln | data
datain f23 Enld o
R sfix; nil | idoubla ()
- booiaan D1 walid data "l double »| dataOut
walidin vall datzOut

validin

NOLRe o NDLRE LTE OFDM Demodulat
JLR] Jermnodulator
NDLRE ’

boolean D1

cyclicPrefixTyp | cyclicPrefixType [
yelicPrefType cyclicPrafoType ¥ VP walid boolaan 01 _ : -‘—‘@l
E:—:—:ean o X walidOut
resetin rEsE
= resetin

Il-"l OFDM Demodulator

¥

¥

r

¥

Split dataOut and validOut into two parts as divided by the reset pulse. The block applies the reset
to the output data one cycle after the reset is applied on the input. Use the validOut signal to
collect the valid output samples.

dataOutl
dataOut2

datalut(1l:resetIndex);
dataOut(resetIndex+1l:end);

3-25

3 Reference Page Examples

3-26

validOutl
validQut2

demodDatal
demodData?2

validOut(1l:resetIndex);
validOut(resetIndex+1l:end);

dataOutl(validOutl);
dataOut2(validOut2);

Generate reference data by flattening and normalizing the unmodulated resource grid data. Truncate
the first cell in the same way as the modulated input data. Apply complex scaling to each
demodulated sequence so that it can be compared to its corresponding reference data.

refDatal
refDatal
refData?2

refDatal
refData?2

demodDatal
demodData?2

gridi(:);
refDatal(1l:length(demodDatal));
grid2(:);

refDatal/norm(refDatal);
refData2/norm(refData2);

demodDatal/(refDatal'*demodDatal);
demodData2/(refData2'*demodData2);

Compare the output of the Simulink model against the truncated input grid, and display the results.

figure('units', 'normalized', 'outerposition', [0 ©@ 1 1])
subplot(2,2,1)
plot(real(refDatal(:)))

hold on

plot(squeeze(real(demodDatal)))

legend('Input grid', 'Demodulated output')
title(sprintf('Cell 1 (NDLRB %d) - Real part', infol.NDLRB))
xLlabel('0OFDM Subcarriers")

subplot(2,2,2)
plot(imag(refDatal(:)))

hold on

plot(squeeze(imag(demodDatal)))

legend('Input grid', 'Demodulated output')

title(sprintf('Cell 1 (NDLRB %d) - Imaginary part', infol.NDLRB))
xLlabel('OFDM Subcarriers")

subplot(2,2,3)
plot(real(refData2(:)))

hold on

plot(squeeze(real(demodData2)))

legend('Input grid', 'Demodulated output')
title(sprintf('Cell 2 (NDLRB %d) - Real part', info2.NDLRB))
xLlabel('0OFDM Subcarriers")

subplot(2,2,4)
plot(imag(refData2(:)))

hold on

plot(squeeze(imag(demodData2)))

legend('Input grid', 'Demodulated output')

title(sprintf('Cell 2 (NDLRB %d) - Imaginary part', info2.NDLRB))
xLlabel('0OFDM Subcarriers")

sqnrRealdBl
sqnrImagdBl

10*1logl0O(var(real(demodDatal))/abs(var(real (demodDatal)
10*1ogl0(var(imag(demodDatal))/abs(var(imag(demodDatal)

- var(real(refDatal(:))))

)
) - var(imag(refDatal(:))))

Reset and Restart LTE OFDM Demodulation

fprintf('\n
fprintf('\n

sqnrRealdB2
sqnrImagdB2

fprintf('\n
fprintf('\n

Cell 1: SQONR of real part is %.2f
Cell 1: SQNR of imaginary part is

Cell 2: SONR of real part is %.2f
Cell 2: SQNR of imaginary part is

Cell 1: SQNR of real part is 33.71 dB

Cell 1: SQNR of imaginary part is 52.26 dB

Cell 2: SQNR of real part is 32.41 dB

Cell 2: SQNR of imaginary part is 36.72 dB
Cell 1 (NDLRB 100) - Real part

0.015 T T T T T T

0.01

0.005

-0.005

0.015
Input grid
Demodulated output

I T | 1 0.01

0.005

-0.005

0 1000 2000 3000 4000 5000 6000 7000 BOOOD 9000

Cell 2 (NDLRB 25) - Real part

OFDM Subcarriers

0.02

0.015

0.01

0.005

Input grid
Demodulated output | 4 0.015

‘W“I”\ “'r

See Also

Blocks

n n I I I I . I
o 500 1000 1500 2000 2500 3000 3500 4000 4500

OFDM Subcarriers

LTE OFDM Demodulator

dB',sqgnrRealdBl)
%.2f dB\n',sgnrImagdBl)

dB',sqgnrRealdB2)
%.2f dB\n',sgnrImagdB2)

Cell 1 (NDLRB 100) - Imaginary part

Input grid
Demadulated output

o 1000 2000 3000 4000 5000 6000 7000 8OO0 9000

OFDM Subcarriers

Cell 2 (NDLRB 25) - Imaginary part

‘ Input grid
Demodulated output | 4
I

II' IH' I\II‘ [T

\ \ \ \ . A L .
0 500 1000 1500 2000 2500 3000 3500 4000 4500
OFDM Subcarriers

10*1logl0O(var(real(demodData2))/abs(var(real(demodData2)) - var(real(refData2(:
10*1logl0(var(imag(demodData2))/abs(var(imag(demodData2)) - var(imag(refData2(:

3-27

))))
))))

3 Reference Page Examples

Modulate and Demodulate LTE Resource Grid

This example shows how to modulate and then demodulate LTE resource grid samples. The model
connects the LTE OFDM Modulator block to the LTE OFDM Demodulator block. To verify the
algorithms of both blocks, this example compares the output of the demodulator with the input of the
modulator. You can generate HDL code from either block.

Generate the input resource grid using LTE Toolbox™.

enb = 1teRMCDL('R.6");
enb.CyclicPrefix="Normal";
enb.TotSubframes = 1;

[~,LTEGrid,info] = 1teRMCDLTool(enb,[1;0;0;11);

NDLRB=info.NDLRB;

if strcmp(enb.CyclicPrefix, 'Normal')
CPType=false;

else
CPType=true;

end

sampling time=1/30.72e6;

modulatorLatency=4137+2048*2;

demodulatorLatency=4137+2048*2;
stoptime=enb.TotSubframes*(30720+modulatorLatency+demodulatorLatency)*sampling time;

Convert the LTEGrid sample frames to a stream of samples with control signals for input to the
Simulink® model.

idlecyclesbetweensamples
idlecyclesbetweenframes

0;
0;

[dataIn,ctrl] = whdlFramesToSamples(mat2cell(LTEGrid(:),numel(LTEGrid),1), ...
idlecyclesbetweensamples,idlecyclesbetweenframes);
validIn = logical(ctrl(:,3));

Run the Simulink model to modulate and demodulate the samples, and save the output samples to a
workspace variable.

open_system('LTEHDLOFDMModDemodExample")
sim('LTEHDLOFDMModDemodExample');

rxgridSimulink = dataOut(validOut);

3-28

Modulate and Demodulate LTE Resource Grid

idoubla [c)

1

boclzan

P

NOLRE [

sfioc16_Eni4 (c)
booiean
boolean

data

valid
LTE OFDM

data

16 Entd ()

P data

iaan

NDLRE

cyclicPrefixType

walid

ready

QFDM Modulator

booigan

,—P walid

LTE OFDM Dy

data

ssz?ﬁEnH-:c'l. dauble

boodaan

dataOut

= NDLRE

CPType

bociean

L

HlH

]+ bookean
»| boolean I

W cycicPrefinType

valid

ready

bocdean

L

OFDM Demodulator

validOut

Compare the input of the modulator, generated from the 1teRMCDLToo1 function, and the output of

the demodulator from the model.

figure('units', 'normalized’, 'outerposition',[0 0 1 1])
subplot(2,1,1);
plot(real (LTEGrid(:)));

hold o

n

plot(squeeze(real(rxgridSimulink)));
legend('Real part of LTE grid', 'Real part of demodulated waveform');
title('Comparision of Input to OFDM Modulator with Output from OFDM Demodulator');
xlabel('OFDM Subcarriers');

ylabel('Real part of the time-domain waveform');

subplot(2,1,2)
plot(imag(LTEGrid(:)))

hold o

n

plot(squeeze(imag(rxgridSimulink)))
legend('Imag part of LTE grid', 'Imag part of demodulated waveform');
title('Comparision of Input to OFDM Modulator with Output from OFDM Demodulator');
xlabel('OFDM Subcarriers');

ylabel('Imag part of the time-domain waveform');

3-29

3 Reference Page Examples

3-30

0.5

0.5

Real part of the time-domain waveform
(=3

Comparision of Input to OFDM Modulator with Output from OFDM Demodulator
T T T T T

Real part of LTE grid

—— Real part of demodulated waveform
||”H||'I| LE |'IN ||I,|II‘I}

-1.5
0 500 1000 1500 2000 2500 3000 3500 4000 4500
QOFDM Subcarriers
Comparision of Input to OFDM Modulator with Output from OFDM Demodulator
15 T T T T T T T
—Imag part of LTE grid

£ —Imag part of demodulated waveform
5 il
g | FINTRTRn
&
=
= -
£ 05
£
[=]
1
E° 7
®
=
‘5 0.5 —
b=
(ol
o
(=]
[v] - —
£ 1

15 | 1 1 1 1 | 1 1

0 500 1000 1500 2000 2500 3000 3500 4000 4500
QOFDM Subcarriers

Blocks

LTE OFDM Demodulator | LTE OFDM Modulator

OFDM Modulation of LTE Resource Grid Samples

OFDM Modulation of LTE Resource Grid Samples

This example shows how to use the LTE OFDM Modulator block to modulate LTE resource grid
samples to an equivalent time-domain signal output. You can generate HDL code from this block.

Generate the input resource grid using LTE Toolbox™.

enb = 1teRMCDL('R.6");
enb.CyclicPrefix="Normal';
enb.TotSubframes = 1;

[~,LTEGrid, info]
[eNodeBOutput,~]

1teRMCDLTool(enb,[1;0;0;11);
1teOFDMModulate(enb,LTEGrid);

Convert the LTEGrid sample frames to a stream of samples with control signals for input to the
Simulink® model.

NDLRB=info.NDLRB;

if strcmp(enb.CyclicPrefix, 'Normal')
CPType=false;

else
CPType=true;

end

sampling time=1/30.72e6;
stoptime=enb.TotSubframes*(30720+4137+2048*2)*sampling time;

idlecyclesbetweensamples
idlecyclesbetweenframes

0;
0;

[dataIln,ctrl] = whdlFramesToSamples(mat2cell(LTEGrid(:),numel(LTEGrid),1), ...
idlecyclesbetweensamples,idlecyclesbetweenframes);
validIn = logical(ctrl(:,3));

Run the Simulink model.
modelname = 'OFDMModulatorModelExample';

open_system(modelname) ;
sim(modelname);

3-31

3 Reference Page Examples

boolaal

boolean

isl’lmﬁ_EnHic]
, |Houble # convert I
» . fpacl=an
boalean
BN o vomen | —

boolean baolean < o .

=fix16_En14 (c) sfix16_En14 (c)

L * boolean | 2 = - convert - dataOut

3-32

boalean 1
false = v
~BT baolean baolean
CPType boolean LTE OFDM Medulator

— FI ’—P 3
idouble | huintB
MOLRE » uintd
= J g poct=an validOut

Save the output of the Simulink model and then compare the output of the model against the output
of the 1teOFDMModulate function.

rxgridSimulink=dataOut(validOut);

figure('units', 'normalized', 'outerposition',[0 0 1 1])

subplot(2,1,1);

plot(real(eNodeBOutput));

hold on

plot(squeeze(real(rxgridSimulink)));

legend('Real part of behavioral waveform', 'Real part of HDL-optimized waveform');
title('Comparison of LTE Time-Domain Downlink Waveforms from Behavioral and HDL-Optimized Algori
xlabel('OFDM subcarriers');

ylabel('Real part of the time-domain waveform');

subplot(2,1,2)

plot(imag(eNodeBOutput))

hold on

plot(squeeze(imag(rxgridSimulink)))

legend('Imag part of behavioral waveform', 'Imag part of HDL-optimized waveform');
title('Comparison of LTE Time-Domain Downlink Waveforms from Behavioral and HDL-Optimized Algori
xlabel('OFDM subcarriers');

ylabel('Imag part of the time-domain waveform');

OFDM Modulation of LTE Resource Grid Samples

forms from Behavioral and HDL-Optimized Algorithms.

0.1 :

s o 9 o
o o o o
-
= T T T

Real part of the time-domain waveform
(=3

Comparison of LTE Time-Domain Downlink Wavef
T T

Real part of behavioral waveform

Real part of HDL-optimized waveform ||

8000

-0.02 —
-0.04 [~ I
-0.06 [~ 3
-0.08 — =

01 1 | 1 1 1 1 |

0 1000 2000 3000 4000 5000 6000 7000
OFDM subcarriers
Comparison of LTE Time-Domain Downlink Waveforms from Behavioral and HDL-Optimized Algorithms.
0.1 T T T T T

0.06 -
0.04 -
002 3

-0.02

-0.06

Imag part of the time-domain waveform
(=3

—Imag part of behavioral waveform

—— Imag part of HDL-oplimized waveform ||

See Also

Blocks
LTE OFDM Modulator

4000
OFDM subcarriers

5000

6000

Tooo

8000

3-33

3 Reference Page Examples

Depuncture and Decode Streaming Samples

This example shows how to use the hardware-friendly Depuncturer block and Viterbi Decoder block
to decode samples encoded at WLAN code rates.

Generate input samples in MATLAB® by encoding random data, BPSK-modulating the samples,
applying a channel model, demodulating the samples, and creating received soft-decision bits. Then,
import the soft-decision bits into a Simulink® model to depuncture and decode the samples. Export
the result of the Simulink simulation back to MATLAB and compare it against the original input
samples.

The example model supports HDL code generation for the HDL Depuncture and Decode subsystem.

modelname = 'ltehdlViterbiDecoderModel';
open_system(modelname);

¥

sampleln

dataln datalut f——| samplaDulTs

’—' [ctrioufTS]
ctart cirin cirlOut ctrlQutTS
and>ample Contral HOL Depuncture and Decode

3-34

Bus Creator

walid

Set Up Code Rate Parameters

Set up workspace variables that describe the code rate. The Viterbi Decoder block supports
constraint lengths in the range [3,9] and polynomial lengths in the range [2,7].

Choose a traceback depth in the range [3,128]. For non-punctured samples, the recommended depth
is 5 times the constraintLength. For punctured samples, the recommended depth is 10 times the
constraintLength.

Starting from a code rate of 1/2, IEEE 802.11 WLAN specifies three puncturing patterns to generate
three additional code rates. Choose one of these code rates, and then set the frame size and
puncturing pattern based on that rate. You can also choose the unpunctured code rate of 1/2.

IEEE 802.11 WLAN specifies different modulation types for different code rates and uses
'Terminated' mode. This example uses BPSK modulation for all rates and can run with
'Terminated' or 'Truncated' operation mode. The blocks also support 'Continuous' mode, but
it is not included in this example.

constraintLength = 7;

codeGenerator = [133 171];

opMode = 'Terminated';
tracebackDepth = 10*constraintLength;

trellis = poly2trellis(constraintLength, ...
codeGenerator);

Depuncture and Decode Streaming Samples

IEEE 802.11n-2009 WLAN 1/2 (7, [133 171])

% Rate Puncture Pattern Maximum Frame Size
% 1/2 [1;1;1;1] 2592

% 2/3 [1;1;1;0] 1728

% 3/4 [1;1;1;0;0;1] 1944

% 5/6 [1;1;1;0;0;1;1;0;0;1] 2160
codeRate = 3/4;

if (codeRate == 2/3)
puncVector = logical([1;1;1;0]);
frameSize = 1728;

elseif (codeRate == 3/4)
puncVector = logical([1;1;1;0;0;1]1);
frameSize = 1944;

elseif (codeRate == 5/6)
puncVector = logical([1;1;1;0;0;1;1;0;0;1]);
frameSize = 2160;

else % codeRate == 1/2
puncVector = logical([1;1;1;1]);
frameSize = 2592;

end

if strcmpi(opMode, 'Terminated')
% Terminate the state at the end of the frame
taillLen = constraintLength-1;
else
% Truncated mode
tailLen = 0;
end

Generate Samples for Decoding

Use Communications Toolbox™ functions and System objects to generate encoded samples and apply
channel noise. Demodulate the received samples, and create soft-decision values for each sample.

EbNo = 10;

EcNo = EbNo - 10*1l0gl10(numel(codeGenerator));
numFrames = 5;

numSoftBits = 4;

txMessages = cell(1l,numFrames);
rxSoftMessages = cell(1l,numFrames);

No = 10"~ ((-EcNo)/10);
quantStepSize = sqrt(No/2”numSoftBits);

modulator = comm.BPSKModulator;
channel = comm.AWGNChannel('EbNo',EcNo);
demodulator = comm.BPSKDemodulator('DecisionMethod', 'Log-likelihood ratio');

for ii = l:numFrames
txMessages{ii} = [randn(frameSize - taillen,1)
zeros(tailLen,1)]>0;
% Convolutional encoding and puncturing
txCodeword = convenc(txMessages{ii},trellis,puncVector);
% Modulation
modOut = modulator.step(txCodeword);

3-35

3 Reference Page Examples

3-36

% Channel

chanOut = channel.step(modOut);

% Demodulation

demodOut = -demodulator.step(chanOut)/4;

% Convert to soft-decision values

rxSoftMessagesDouble = demodOut./quantStepSize;

rxSoftMessages{ii} = fi(rxSoftMessagesDouble,1l,numSoftBits,0);
end

Set Up Variables for Simulink Simulation

The Simulink model requires streaming samples with accompanying control signals. Use the
whdlFramesToSamples function to convert the framed rxSoftMessages to streaming samples and
generate the matching control signals.

Calculate the required simulation time from the latency of the depuncture and decoder blocks.

samplesizeln = 1;

idlecyclesbetweensamples = 0;

idlecyclesbetweenframes = 0;

if strcmpi(opMode, 'Truncated')
% Truncated mode requires a gap between frames of at least constraintLength-1
idlecyclesbetweenframes = constraintLength - 1;

end

[sampleIn,ctrlIn] = whdlFramesToSamples(rxSoftMessages,
idlecyclesbetweensamples,idlecyclesbetweenframes, samplesizeln);

depunLatency = 6;
vitLatency = 4*tracebackDepth + constraintLength + 13;
latency = vitlLatency + depunLatency;

simTime = size(ctrlIn,1l) + latency;
sampletime = 1;

Run the Simulink Model

Call the Simulink model to depuncture and decode the samples. The model exports the decoded
samples to the MATLAB workspace. The Depuncture and Viterbi Decoder block parameters are
configured using workspace variables. Because Operation mode is a list parameter, use set param
to assign the workspace value.

Convert the streaming samples back to framed data for comparison.

set param([modelname '/HDL Depuncture and Decode'l, 'Open','on');

set param([modelname '/HDL Depuncture and Decode/Viterbi Decoder'], ...
'TerminationMethod', opMode) ;

sim(modelname);

sampleOut = squeeze(sampleQutTS.Data);

ctrlOut = [squeeze(ctrlQutTS.start.Data)
squeeze(ctrlOutTS.end.Data)
squeeze(ctrlOutTS.valid.Data)];

rxMessages = whdlSamplesToFrames(sampleOut,ctrlOut);

Maximum frame size computed to be 1944 samples.

Depuncture and Decode Streaming Samples

sfied

aficd [2x1]
[2+1]

data data

-,

samplacontrol

¥

data
dataln =

samplacontral) .
....................... ol Vitarbi Decoder

Diepunciurer ctrl

@

... e Al bookzan [2x1]

arasure Brasure

=¥

2

data

ctrl

Verify Results

Compare the output samples against the generated input samples.

fprintf('\nDecoded Samples\n');
for ii = l:numFrames
numBitsErr = sum(xor(txMessages{ii}, rxMessages{ii}));
fprintf('Frame #%d: %d bits mismatch \n',ii,numBitsErr);
end

Decoded Samples

Frame #1: 0 bits mismatch
Frame #2: 0 bits mismatch
Frame #3: 0 bits mismatch
Frame #4: 0 bits mismatch
Frame #5: 0 bits mismatch

See Also

Blocks
Depuncturer | Viterbi Decoder

bool=an

EE——
0

samplacontrol

............ e

3-37

3 Reference Page Examples

LTE Symbol Modulation of Data Bits

3-38

This example shows how to use the LTE Symbol Modulator block to modulate data bits to complex
data symbols. You can generate HDL code from this block.

Set up input data parameters. Choose a data length for each modulation type. The data length must
be an integer multiple of number of bits per symbol.

rng(0);
framesize = 240;

Map modulation names to values
0 - BPSK

1 - QPSK

2 - 16-QAM

3 - 64-QAM

4 - 256-QAM

others - QPSK

0® 0% of o° o o° o°

% For LTE Symbol Modulator Simulink block
modSelval = [0;1;2;3;4];

% For |lteSymbolModulate| function
modSelStr = {'BPSK', 'QPSK', '16QAM"', '64QAM", '256QAM"};

outWordLength = 16;

numframes = length(modSelVal);
dataBits = cell(1l,numframes);
modSelTmp = cell(1l,numframes);
lteFcnOutput = cell(1l,numframes);

Generate frames of random input samples.

for ii = 1l:numframes
dataBits{ii} = logical(randi([0 1], framesize,l));
modSelTmp{ii} = fi(modSelVal(ii)*ones(framesize,1),0,3,0);

end

Convert the framed input data to a stream of samples and input the stream to the LTE Symbol
Modulator Simulink block.

idlecyclesbetweensamples = 0;

idlecyclesbetweenframes 0;

[sampleIn, ctrl] = whdlFramesToSamples(dataBits,idlecyclesbetweensamples,...
idlecyclesbetweenframes);

[modSel, ~] = whdlFramesToSamples(modSelTmp,idlecyclesbetweensamples,...
idlecyclesbetweenframes);

load = logical(ctrl(:,1)"');

validIn = logical(ctrl(:,3)"');

sampletime = 1;
samplesizeln = 1;
simTime = size(ctrl,1);

Run the Simulink model.

LTE Symbol Modulation of Data Bits

modelname = 'ltehdlSymbolModulatorModel';
open_system(modelname) ;

sim(modelname) ;
bookaan
sampleln | dataln
sfi16_En14 (c)
dataliut » sampleOut
D203 dn
walidln Je| validin
ufixd
modSal | modSel
boolaan
validOut p walidOut
boolaan
load | load
Symbol Modulator

Export the stream of modulated samples from Simulink to the MATLAB workspace.

sampleOut = squeeze(sampleQut).';
1teHDLOutput = sampleOut(squeeze(validOut));

Modulate data bits with 1TteSymbolModulate function and use its output as a reference data.
for ii = 1l:numframes

lteFcnOutput{ii} = lteSymbolModulate(dataBits{ii},modSelStr{ii}).";
end

Compare the output of the Simulink model against the output of L1teSymbolModulate function.

fprintf('\nLTE Symbol Modulator\n');

lteFcnQutput = fi(cell2mat(lteFcnOutput),l,outWordLength,outWordLength-2);

difference = sum(abs(lteHDLOutput-1teFcnOutput(1l:length(lteHDLOutput))));

fprintf('\nTotal number of samples differed between Simulink block output and Reference data out]

LTE Symbol Modulator

Total number of samples differed between Simulink block output and Reference data output: 0

See Also

Blocks
LTE Symbol Modulator

3-39

3 Reference Page Examples

NR Symbol Modulation of Data Bits

3-40

This example shows how to use the NR Symbol Modulator block to modulate data bits to complex
data symbols. You can generate HDL code from this block.

Set up input data parameters. Choose a data length for each modulation type. The data length must
be an integer multiple of number of bits per symbol.

rng(0);
framesize = 240;

ap modulation names to values
- BPSK
- QPSK
- 16-QAM
- 64-QAM
- 256-QAM
- pi/2-BPSK
others - QPSK

UhrhrwWNRFROZX=

0® % o° o° o° o° o° o°

% for NR Symbol Modulator Simulink block
modSelval = [0;1;2;3;4;5];

% for nrSymbolModulate function
modSelStr = {'BPSK', 'QPSK", '16QAM"', '64QAM"', '256QAM", 'pi/2-BPSk'};

outWordLength = 16;

numframes = length(modSelVal);
dataBits = cell(1l,numframes);
modSelTmp = cell(1l,numframes);

nrFcnOutput = cell(1l,numframes);

Generate frames of random input samples.

for ii = 1l:numframes
dataBits{ii} = logical(randi([0 1],framesize,l));
modSelTmp{ii} = fi(modSelVal(ii)*ones(framesize,1),0,3,0);

end

Convert the framed input data to a stream of samples and input the stream to the Simulink block.

idlecyclesbetweensamples = 0;

idlecyclesbetweenframes = 0;

[sampleIn, ctrl] = whdlFramesToSamples(dataBits,idlecyclesbetweensamples, ...
idlecyclesbetweenframes);

[modSel, ~] = whdlFramesToSamples(modSelTmp,idlecyclesbetweensamples,...
idlecyclesbetweenframes);

load = logical(ctrl(:,1)"');

validIn = logical(ctrl(:,3)"');

sampletime = 1;
samplesizeln = 1;
simTime = size(ctrl,61);

Run the Simulink model.

NR Symbol Modulation of Data Bits

modelname = 'nrhdlSymbolModulatorModel';
open_system(modelname) ;

sim(modelname) ;
boclaar
sampleln | dataln
sfix16_En14 (c)
dataOutf—————— el sampleOut
bookaar
walidln | validin
ufid
modSal | modSel
booclaan
validOut p{ wvalidOut
beolaar
load - load
E MR Symbol Modulator

Export the stream of modulated samples from Simulink to the MATLAB workspace.

sampleOut = squeeze(sampleOQut).';
nrHDLOutput = sampleOut(squeeze(validOut));

Modulate frame data bits with nrSymbolModulate function and use the output of this function as a
reference data.

for ii = l:numframes

nrFcnOutput{ii} = nrSymbolModulate(dataBits{ii},modSelStr{ii}).";
end

Compare the output of the Simulink model against the output of nrSymbolModulate function.

fprintf('\nNR Symbol Modulator\n');

nrFcnQutput = fi(cell2mat(nrFcnOutput),l,outWordLength,outWordLength-2);

error = sum(abs(nrHDLOutput-nrFcnOutput(1l:length(nrHDLOutput))));

fprintf('\nTotal number of samples differed between Behavioral and HDL simulation: %d \n',error)

NR Symbol Modulator

Total number of samples differed between Behavioral and HDL simulation: 0

See Also

Blocks
NR Symbol Modulator

3-41

3 Reference Page Examples

LTE Symbol Demodulation of Complex Data Symbols

3-42

This example shows how to use the LTE Symbol Demodulator block to demodulate complex LTE data
symbols to data bits or LLR values. The workflow follows these steps:

Set up input data parameters.

Generate frames of random input samples.

Convert framed input data to a stream of samples and import the stream into Simulink®.
Run the Simulink® model, which contains the LTE Symbol Demodulator block.

Export the stream of demodulated samples from Simulink to the MATLAB® workspace.

S U1 A W N R

Demodulate data symbols with 1teSymbolDemodulate function to use its output as a reference
data.

7 Compare Simulink block output data with the reference MATLAB function output.
Set up input data parameters.

Map modulation names to values. The numerical values are used to set up the LTE Symbol
Demodulator block. The strings are used to configure the 1teSymbolDemodulator function.

rng(0);

framesize = 10;

% 0 - BPSK

% 1 - QPSK

% 2 - 16-QAM

% 3 - 64-QAM

% 4 - 256-QAM

% others - QPSK

modSelVal = [0;1;2;3;4];

modSelStr = {'BPSK', 'QPSK"', '16QAM', '64QAM', '256QAM"'};

decType = 'Soft';

numframes = length(modSelVal);
dataSymbols = cell(1l,numframes);
modSelTmp = cell(1l,numframes);
lteFcnOutput = cell(1l,numframes);

Generate frames of random input samples.

for ii = l:numframes
dataSymbols{ii} = complex(randn(framesize,l),randn(framesize,1));
modSelTmp{ii} = fi(modSelVal(ii)*ones(framesize,1),0,3,0);

end

Convert the framed input data to a stream of samples and input the stream to the LTE Symbol
Demodulator Simulink block.

idlecyclesbetweensamples 0;

idlecyclesbetweenframes 0;

[sampleIn, ctrl] = whdlFramesToSamples(dataSymbols,idlecyclesbetweensamples, ...
idlecyclesbetweenframes);

[modSel, ~] = whdlFramesToSamples(modSelTmp,idlecyclesbetweensamples, ...
idlecyclesbetweenframes);

LTE Symbol Demodulation of Complex Data Symbols

validIn = logical(ctrl(:,3)"');

sampletime = 1;
samplesizeln = 1;
simTime = size(ctrl,1)*8;

Run the Simulink model.

modelname = 'ltehdlSymbolDemodulatorModel"';

open_system(modelname) ;

set param([modelname '/Demod/LTE Symbol Demodulator'], 'DecisionType',decType)
sim(modelname);

sfie16_En13 (c)) |sfix1E_En13

- p sampleCut
boolaan - . boolean
2 o2 2 p| validOut
ufind boodaan
3] 3 | readyOut
soolaan Demaod
_____ ! |

Export the stream of demodulated samples from Simulink to the MATLAB workspace.
1teHDLOutput = sampleQut(validOut)."';

Demodulate data symbols with 1teSymbolDemodulate function and use its output as a reference
data.

for ii = 1l:numframes

1teFcnOutput{ii} = lteSymbolDemodulate(dataSymbols{ii},modSelStr{ii}, decType)."';
end

Compare the output of the Simulink model against the output of 1teSymbolDemodulate function.

1teFcnOutput = double(cell2mat(lteFcnOutput));

figure(1)
stem(1lteHDLOutput, 'b")
hold on
stem(lteFcnOutput,'--r")
grid on

legend('Reference’, 'Simulink")

xlabel('Sample Index')

ylabel('Magnitude")

title('Comparison of Simulink block and MATLAB function')

3-43

3 Reference Page Examples

—& Reference
= = Simulink

Comparison of Simulink block and MATLARE function

apnuubey

150 200 250
Sample Index

100

50

See Also

Blocks

LTE Symbol Demodulator

3-44

NR Symbol Demodulation of Complex Data Symbols

NR Symbol Demodulation of Complex Data Symbols

This example shows how to use the NR Symbol Demodulator block to demodulate complex NR data
symbols to data bits or LLR values. The workflow follows these steps:

Set up input data parameters.

Generate frames of random input samples.

Convert framed input data to a stream of samples and import the stream into Simulink.
Run the Simulink® model, which contains the NR Symbol Demodulator block.

Export the stream of demodulated samples from Simulink to the MATLAB® workspace.

S U1 A W N R

Demodulate data symbols with nrSymbolDemodulate function to use its output as a reference
data.

7 Compare Simulink block output data with the reference MATLAB function output.
Set up input data parameters.

Map modulation names to values. The numerical values are used to set up the NR Symbol
Demodulator block. The strings are used to configure the nrSymbolDemodulator function.

rng(0);
framesize = 10;

- BPSK
- QPSK
- 16-QAM
64-QAM
- 256-QAM
- pi/2-BPSK
others - QPSK
modSelVal [0;1;2;3;4;5];
modSelStr {'BPSK"', 'QPSK', '16QAM', '64QAM', '256QAM', 'pi/2-BPSK'};

0® 0% of o° o o° o°
U WNRERO
f

decType = 'Soft';

numframes = length(modSelVal);
dataSymbols = cell(1l,numframes);
modSelTmp = cell(1l,numframes);
nrFcnOutput = cell(1l,numframes);

Generate frames of random input samples.

for ii = l:numframes
dataSymbols{ii} = complex(randn(framesize,l),randn(framesize,1));
modSelTmp{ii} = fi(modSelVal(ii)*ones(framesize,1),0,3,0);

end

Convert the framed input data to a stream of samples and input the stream to the NR Symbol
Demodulator Simulink block.

idlecyclesbetweensamples 0;

idlecyclesbetweenframes 0;

[sampleIn, ctrl] = whdlFramesToSamples(dataSymbols,idlecyclesbetweensamples, ...
idlecyclesbetweenframes);

[modSel, ~] = whdlFramesToSamples(modSelTmp,idlecyclesbetweensamples, ...

3-45

3 Reference Page Examples

idlecyclesbetweenframes);
validIn = logical(ctrl(:,3)"');
sampletime = 1;
samplesizeln = 1;
simTime = size(ctrl,1)*8;

Run the Simulink model.

modelname = 'nrhdlSymbolDemodulatorModel’;

open_system(modelname) ;

set param([modelname '/NRDemod/NR Symbol Demodulator'], 'DecisionType',decType)
sim(modelname);

sfi16_En13 (c) s 18_En13
P 1 1 p sampleCut

boolean - boolaan

2 o2 2 p| wvalidOut
ufind boodaan

3 (2 3

L
scolaan MRDemod
_____ 1 |

Export the stream of demodulated samples from Simulink to the MATLAB workspace.
nrHDLOutput = sampleQut(validOut).';

Demodulate data symbols with nrSymbolDemodulate function and use its output as a reference
data.

for ii = l:numframes
nrFcnOutput{ii} = nrSymbolDemodulate(dataSymbols{ii},modSelStr{ii}, 'DecisionType',decType,1).";
end

Compare the output of the Simulink model against the output of nrSymbolDemodulate function.

nrFcnOutput = double(cell2mat(nrFcnOutput));

figure(1)
stem(nrHDLOutput, 'b")
hold on
stem(nrFcnOutput, '--r")
grid on

legend('Reference', 'Simulink')

xlabel('Sample Index')

ylabel('Magnitude")

title('Comparison of Simulink block and MATLAB function')

3-46

NR Symbol Demodulation of Complex Data Symbols

Comparison of Simulink block and MATLARE function

15

o
o —& Reference
= = Simulink

5
10

Juk}

s

2

=

n

m

=

u
&
_1 D i i i i
0 50 100 150 200 250
Sample Index

See Also
Blocks
NR Symbol Demodulator

3-47

3 Reference Page Examples

Application of FFT 1536 block in LTE OFDM Demodulation

3-48

This example shows how to use the FFT 1536 block in LTE OFDM demodulation.

Generate transmitter waveform.

Remove cyclic prefix.

Prepare inputs for FFT 1536 simulation.

Form resource grid.

Compare the CellRS symbols from the grid with that of 1teCellRS function.
Generate HDL code.

o U A W N M

Generate transmitter waveform.

cfg = lteTestModel('1.1","'15MHz");
cfg.TotSubframes = 1;
tx = lteTestModelTool(cfg);
The above transmitter waveform generation uses a 2048-point FFT, which results in a scaling factor
1
of %= in OFDM modulation. If a 1536-point FFT were used, the waveform would have a scaling factor

1 2045
of TiiG. This example multiplies the waveform by a factor of 1% to achieve the correct scaling.
tx = tx*(2048/1536);

] 3. 0Mehi

To achieve a 23.04 Msps sampling rate, resample the tx samples by + = .72

rx = resample(tx,3,4); % rate conversion from 30.72Msps to 23.04Msps

Remove cyclic prefix. The first symbol of each slot has 12 additional CP samples.

rx(11520+1:11520+12) = []; % discard 12 CP samples in slot 2

rx(1:12) = []; % discard 12 CP samples in slot 1

rx = reshape(rx,108+1536,14); % reshape to form 14 OFDM symbols
rx(1:108,:) = []1; % discard remaining 108 CP samples from all symbols

Prepare inputs for FFT 1536 simulation.
SampleTime = 4.3e-8; % 1/23.04€6;
data = rx(:);

valid = true(1536*14,1);

data = fi(data,1,22,20);

dataln = timeseries(data, (0:length(data)-1).'*SampleTime);
validIn = timeseries(valid, (0:length(valid)-1).'*SampleTime);

FFT1536Latency = 3180;

NofClks = FFT1536Latency+length(data); % number of simulation clock cycles
StopTime = (NofClks)*SampleTime;

open_system HDLFFT1536model;
sim HDLFFT1536model;

Application of FFT 1536 block in LTE OFDM Demodulation

¥

sfi22 En20 (c) sfic24 En20 (c)
dataln I data data
FFT 1536
Latency = 3180
boolaan samplecontral
validin e valid ot = 3
FFT 1536
simOut = dataOut(validOut);
simOut = double(simOut(:)*1536);

Form the resource grid and remove the DC subcarrier.

fftOut = fftshift(reshape(simOut,1536,14));
resourceGrid = fftOut(318+1:318+1+900,:);
resourceGrid(900/2+1,:) = [1;

dataCut

boolaan
[

*
<slart>

startOut

boolaan
.

[
<and>

endOut

boolaan
|-

- Ll
<yalid=

validOut

Compare the CellRS symbols from the grid with the symbols returned from the 1teCellRS function.

cellRS = lteCellRS(cfg);

cellRSIndices = lteCellRSIndices(cfg);

simCellRS = resourceGrid(cellRSIndices);

figure;
plot(real(simCellRS),imag(simCellRS), 'o', 'MarkerSize',15);
hold on;

plot(real(cellRS),imag(cellRS), '*', 'MarkerSize',b10)
legend('CellRS symbols from the FFT 1536 simulation grid'...

, 'CellRS symbols from lteCellRS function', 'Location', 'southoutside')

axis([-11 -1 11);

3-49

3 Reference Page Examples

0.5 7

@ @

_1 i i i i i i i i i

-1 08 06 -04 -02 0 0.2 0.4 0.6 0.8 1

(O CellRS symbols from the FFT 1536 simulation grid
CellRS symbaols from IteCellRS function

To generate HDL code for the FFT 1536 block, you must have an HDL Coder™ license. To generate
HDL code from the FFT 1536 block in this model, right-click the block and select Create Subsystem
from Selection. Then right-click the subsystem and select HDL Code > Generate HDL Code for
Subsystem.

See Also

Blocks
FFT 1536

3-50

Convolutional Encode and Puncture Streaming Samples

Convolutional Encode and Puncture Streaming Samples

This example shows how to use the hardware-friendly Convolutional Encoder and Puncturer blocks to
encode samples at WLAN code rates.

1 Generate random input frame samples with frame control signals by using the
whdlFramesToSamples function in MATLAB®.

2 Import these samples into a Simulink® model and run the model to encode and puncture the
samples.

3 Export the result of the Simulink simulation back to MATLAB.
Generate reference samples using the convenc MATLAB function with puncturing enabled.
5 Compare the Simulink results with the reference samples.

The example model supports HDL code generation for the EncodeAndPuncture subsystem, that
contains the Convolutional Encoder and Puncturer blocks.

modelname = 'GenConvEncPuncturerModel';
open_system(modelname);

k4

data data —I-I:I)

Puncturer

ciri ctrl —P

data data

Convolutiona
Encoder

D g
cir ctrl

h 4

Set up workspace variables that describe the code rate. The Convolutional Encoder block supports
constraint lengths in the range [3,9] and polynomial lengths in the range [2,7].

Starting from a code rate of 1/2, IEEE 802.11 WLAN specifies three puncturing patterns to generate
three additional code rates. Choose one of these code rates, and then set the frame size and
puncturing pattern based on that rate. You can also choose the unpunctured code rate of 1/2.

IEEE 802.11 WLAN specifies different code rates and uses 'Terminated' mode. The blocks also
support 'Continuous' mode and 'Truncated' modes, but they are not included in this example.

constraintLength = 7;
codeGenerator = [133 171];

trellis = poly2trellis(constraintLength, ...
codeGenerator);

IEEE 802.11n-2009 WLAN 1/2 (7, [133 171])

% Rate Puncture Pattern Maximum Frame Size
% 1/2 [1;1;1;1] 2592
% 2/3 [1;1;1;0] 1728
% 3/4 [1;1;1;0;0;1] 1944
% 5/6 [1;1;1;0;0;1;1;0;0;1] 2160

codeRate = 3/4;
if (codeRate == 2/3)
puncVector = logical([1;1;1;0]);

3-51

3 Reference Page Examples

3-52

frameSize = 1728;

elseif (codeRate == 3/4)
puncVector = logical([1;1;1;0;0;1]1);
frameSize = 1944;

elseif (codeRate == 5/6)
puncVector = logical([1;1;1;0;0;1;1;0;0;1]);
frameSize = 2160;

else % codeRate == 1/2
puncVector = logical([1;1;1;1]);
frameSize = 2592;

end

Generate input frame samples for encoding and puncturing by using Communications Toolbox™
System objects to generate encoded samples.

numFrames = 5;

txMessages
txCodeword

cell(1l,numFrames);
cell(1l,numFrames);

for ii = l:numFrames
txMessages{ii} = logical(randn(frameSize-constraintlLength+1,1));
end

Set up variables for Simulink simulation. The Simulink model requires streaming samples with
accompanying control signals. Calculate the required simulation time from the latency of the
Convolutional Encoder and Puncturer blocks.

samplesizeln = 1;

idlecyclesbetweensamples = 0;

idlecyclesbetweenframes = constraintLength-1;

[sampleIn,ctrlIn] = whdlFramesToSamples(txMessages,
idlecyclesbetweensamples,idlecyclesbetweenframes, samplesizeln);

startIn = ctrlIn(:,1);
endIn = ctrlIn(:,2);
validIn = ctrlIn(:,3);

simTime = size(ctrlIn,1)+6;
sampletime = 1;

Run the Simulink model.

set param([modelname '/EncodeAndPuncture'], 'Open','on');
sim(modelname);

Convert the streaming samples from the Simulink block output to framed data for comparison.

sampleOut = squeeze(sampleOut);

startOut = ctrlOut(:,1);
endOut = ctrlOut(:,2);
validOut = ctrlOut(:,3);

idxStart = find(startOut.*validOut);
idxEnd = find(endOut.*validOut);

Generate reference samples using convenc MATLAB function.

Convolutional Encode and Puncture Streaming Samples

for ii

end

Compare the output samples against the generated input samples.

1:numFrames
txCodeword{ii} = convenc([txMessages{ii};false(constraintLength-1,1)1,...

trellis, puncVector);

fprintf('\nEncoded Samples\n');

for ii
idx

end

1:numFrames

idxStart(ii):idxEnd(ii);
idxValid = (validOut(idx));
dataOut = sampleOut(:,idx);
hd1TxCoded = dataOut(:,idxValid);
numBitsErr =
fprintf('Number of samples mismatched in the frame #%d: %d bits\n',ii,numBitsErr);

Encoded Samples

Number
Number
Number
Number
Number

of
of
of
of
of

samples
samples
samples
samples
samples

See Also

Blocks

mismatched
mismatched
mismatched
mismatched
mismatched

in
in
in
in
in

Convolutional Encoder | Puncturer

the
the
the
the
the

frame
frame
frame
frame
frame

#1:
#2:
#3:
#4 .
#5:

[oNoNoNoNO]

sum(xor(txCodeword{ii}, hd1lTxCoded(:)));

bits
bits
bits
bits
bits

3-53

3 Reference Page Examples

OFDM Demodulation of Streaming Samples

3-54

This example shows how to use the OFDM Demodulator block to demodulate complex time-domain
OFDM samples to subcarriers for a vector input. This example model supports HDL code generation
for the OFDMDemod subsystem.

Set up input data parameters

rng('default');
numOFDMSym = 2;

maxFFTLen = 128;

DCRem = true;
RoundingMethod = 'floor';
Normalize = false;
cpFraction = 1;

fftLen = 64;
cpLen = 16;
numLG = 6;
numRG = 5;
if DCRem
NullInd = [1l:numLG fftLen/2+1 fftLen-numRG+1l:fftLen];
else
NullInd = [1l:numLG fftLen-numRG+1:fftLen]; %#ok<UNRCH>
end

symbOffset = floor(cpFraction*cpLen);
vecLen = 2;

Generate frames of random input samples

data = randn(fftLen,numOFDMSym)+1li*randn(fftLen,numOFDMSym) ;
dataIn = ofdmmod(data, fftLen,cpLen);

Convert the framed input data to a stream of samples and import the input stream to
Simulink®

data = dataln(:);
valid = true(length(dataIn)/veclLen,1l);
fftSig = fftLen*ones(length(dataln),l);

CPSig = cpLen*ones(length(dataIn),1);
LGSig = numLG*ones(length(dataln),l);
RGSig = numRG*ones(length(dataIn),1);

resetSig = false(length(data),l);
sampleTime = 1/veclen;
stopTime = (maxFFTLen*3*numOFDMSym)/vecLen;

Run the Simulink model

modelname = 'genhdlOFDMDemodulatorModel"';
open_system(modelname);
out = sim(modelname);

OFDM Demodulation of Streaming Samples

z! -
booleany
n _|sfixt6_Ent4 c) [2x1] .
[2x1]
sfi23_Eni4 {c) [2x1 ouble (c) [Ix1
boclaan data = - [F double — "-|= DLllt.dataDut
2 NE: [2x1] [2x1]
nt16
3 ;. 1
ni16 xolaan .
4 k] 3 »| out.validOut
wnt16
5 -
sl nt16 »l6 o
ready
Inputs
boolaan
resetSig |7
|l-"| OFDMDemod

Export the stream of demodulated samples of the Simulink block to the MATLAB®
workspace

simOut = squeeze(out.dataOut(:,1,out.validOut==1));
Demodulate random input samples using ofdmdemod_baseline function

[dataOutl] = ofdmdemod baseline(dataIn,fftLen,cpLen,symbOffset,NullInd.',[],Normalize,RoundingMe
matOut = dataOutl(:);

Compare the output of the Simulink model against the output of ofdmndemod_baseline
function

figure('units', 'normalized’, 'outerposition',[0 0 1 1])

subplot(2,1,1)

plot(real(matOut(:)));

hold on;

plot(real(simOut(:)));

grid on

legend('Reference’, 'Simulink")

xlabel('Sample Index')

ylabel('Magnitude")

title('Comparison of Simulink block and MATLAB function - Real part')

subplot(2,1,2)

plot(imag(matOut(:)));

hold on;

plot(imag(simQut(:)));

grid on

legend('Reference’, 'Simulink")

xlabel('Sample Index')

ylabel('Magnitude")

title('Comparison of Simulink block and MATLAB function - Imaginary part')

3-55

3 Reference Page Examples

sqnrRealdB=10*1ogl0(var(real(simOut(:)))/abs(var(real(simOut(:)))-var(real(matOut(:)))));
sqnrImagdB=10*1ogl0(var(imag(simOut(:)))/abs(var(imag(simOut(:)))-var(imag(matOut(:)))));

fprintf('\n OFDM Demodulator: \n SQNR of real part is %.2f dB',6sgnrRealdB);
fprintf('\n SQNR of imaginary part is %.2f dB\n',sqnrImagdB);

OFDM Demodulator:
SQNR of real part is 47.77 dB
SQNR of imaginary part is 42.69 dB

Comparison of Simulink block and MATLAB function - Real part
T

4 T T T T
b Reference
3 I| ‘I"l f Simulink | |
|
I |‘|
2 II |1
[] f A
© [[V N |l _
z1 | [AN i /1 n
= | [| VY LV [
= I Y A O R AR O B B |
2o/ VLA oA |
=2 A T
[Ihl V| A Yl V lf" '\I
-1 ’ | ¥ if \ N
I I
| |
2 f .
1
3 I 5 I I | I
0 20 40 60 80 100 120
Sample Index
Comparison of Simulink block and MATLAB function - Imaginary part
3 T T T T T
\ — Reference
. ‘u Simulink | _|
| oA |
It A | f
| { —
Aol In
o \ WY | L an 'II\ | \'\,ﬂ | L
=] ol | | { A | Y —
= "I| | \II | | ". II \/ Y | / | II‘I I|| ‘II \
& I\ | A | l [[1 |1
| ! ! ! | Ly
= 3 ' r | il —
| |
|
i N
|
I|
Al \ i
4 1 1 1 | 1
0 20 40 60 80 100 120
Sample Index
Blocks

OFDM Demodulator

3-56

Decode and recover message from RS codeword

Decode and recover message from RS codeword

This example shows how to use RS Decoder block to decode and recover a message from a Reed-
Solomon (RS) codeword. In this example, a set of random inputs are generated and provided to the
comm.RSEncoder function and its output is provided to the RS Decoder block. The output of the RS
Decoder block is compared with the input of the comm.RSEncoder function to check whether any
errors are encountered. The example model supports HDL code generation for the RS Decoder
subsystem.

Set up input data parameters

n = 255;

k = 239;

primPoly = [1 0001110 1];
B =1;

nMessages = 4;

data = zeros(k,nMessages);
inputMsg = (zeros(n,nMessages));
startSig = [];
endSig = [1;

Generate random input samples

Generate random samples based on n,k, and m values and provide them as input to the
comm.RSEncoder function. Here, n is the codeword length, k is the message length, and m is the gap
between the frames.

hRSEnc = comm.RSEncoder;
hRSEnc.CodewordLength =
hRSEnc.MessagelLength = k;
m=0;

for ii = l:nMessages

data(:,ii) = randi([0 n],k,1);
[1nputMsg(1 n,ii)] = hRSEnc(data(:,ii));
inputMsgl(1l:n,ii) = inputMsg(l:n,ii);
[inputMsg(n+1l:n+m,ii)] = zeros(m,1);
validIn(1l:n,ii) = true;

validIn(n+1l:n+m) = false;

endSig = [endSig [false(n-1,1); true;false(m,1);11;
startSig = [startSig [true;false(n+m-1,1)11;

end
refOutput = data(:);

Import the encoded random input samples to the Simulink® model

The output of the comm.RSEncoder function is provided as input to the Simulink block.
simDataIn = inputMsg(:);

simStartIn = startSig(:);

simEndIn = endSig(:);
simValidIn = validIn(:);

3-57

3 Reference Page Examples

Run the Simulink model

modelname = 'RSDecoder';
open_system(modelname);
out = sim(modelname);

3-58

e
dataOut Pl Out.data0u
bia uintE:
simDataln »| convert | dataln samplecontral
cirlOut e -
hoolaan
| UL ElAMNCUL
- <starts
i = pookaan arrCut Eean H
simStartin » boolean ey eis : bookean
5 start :
ntq T‘—h subendOul
nmErTore
bl haoolaan boolkaan
simEndin » boolean Pl end doiban <valid
nextFrams oul.validOul
Sample Control
b b e Bus Selector
xoldaan oo
simValidin B boolean _‘i:# RS Decoder
' pfout errOut
Pefoul numErrons

v

ul.metFrame

Export the decodes samples of the Simulink block to the MATLAB® workspace.
simOutput = out.datalOut(out.validOut);

Compare the output of the Simulink block with the inputs provided to the comm.RSEncoder
function

fprintf('\nHDL RS Decoder\n');

difference = double(simOutput) - double(refOutput);

fprintf('\nTotal number of samples differed between Simulink block output and MATLAB function
HDL RS Decoder

Total number of samples differed between Simulink block output and MATLAB function output is:

See Also

Blocks
RS Decoder

ou

0

LDPC Encode and Decode of Streaming Data

LDPC Encode and Decode of Streaming Data

This example shows how to simulate the NR LDPC Encoder and NR LDPC Decoder Simulink® blocks
and compare the hardware-optimized results with the results from the 5G Toolbox™ functions. These
blocks support scalar and vector inputs. The NR LDPC Decoder block enables you to select either
Min-sum or Normalized min-sum algorithm for decoding operation.

Generate Input Data for Encoder

Choose a series of input values for bgn and liftingSize according to the 5G NR standard. Generate the
corresponding input vectors for the selected base graph number (bgn) and liftingSize values.
Generate random frames of input data and convert them to Boolean data and control signal that
indicates the frame boundaries. encFrameGap accommodates the latency of the NR LDPC Encoder
block for bgn and liftingSize values. Use the nextFrame signal to determine when the block is ready
to accept the start of the next input frame.

bgn
liftingSize
numFrames = 4;

serial = false; % {false,true};

[0; 1; 1; 0];
[4; 384; 144; 208];

encbgnIn = [];encliftingSizeIn = [];

msg = {numFrames};

K=[1;N=[];

encSampleIn = [];encStartIn = [];encEndIn = [];encValidIn = [];
encFrameGap = 2500;

for ii = l:numFrames

if bgn(ii) ==
K(ii) = 22;
N(ii) = 66;
else
K(ii) = 10;
N(ii) = 50;
end

frameLen = liftingSize(ii) * K(ii);

msg{ii} = randi([0 1],1,framelLen);

if serial

len = K(ii) * liftingSize(ii);

encFrameGap = liftingSize(ii) * N(ii) + 2500;

else

len = K(ii) * ceil(liftingSize(ii)/64); S#ok<*UNRCH>
encFrameGap = 2500;

end

encIn = ldpc_dataFormation(msg{ii},liftingSize(ii),K(ii),serial);

encSampleIn = logical([encSampleIn encIn zeros(size(encIn,l),encFrameGap)]); S#ok<*AGROW>
encStartIn = logical([encStartIn 1 zeros(l,len-1) zeros(1l,encFrameGap)l]);

encEndIn = logical([encEndIn zeros(1l,len-1) 1 zeros(1l,encFrameGap)]);

encValidIn = logical([encValidIn ones(1,len) zeros(1l,encFrameGap)]);

encbgnln = logical([encbgnIn repmat(bgn(ii),1,len) zeros(1l,encFrameGap)]);

encliftingSizeIn = uintl6([encliftingSizeIn repmat(liftingSize(ii),1,len) zeros(1l,encFrameGa
end

encSampleIn = timeseries(logical(encSampleln'));

3-59

3 Reference Page Examples

sampleTime = 1;
simTime = length(encValidIn); %#0ok<NASGU>

Run Encoder Model

The HDL Algorithm subsystem contains the NR LDPC Encoder block. Running the model imports the
input signal variables encSampleln, encStartIn, encEndIn, encValidIn, encbgnlIn,
encliftingSizeln, sampleTime, and simTime and exports sampleOut and ctrlOut variables to
the MATLAB® workspace.

open_system('NRLDPCEncoderHDL");
encOut = sim('NRLDPCEncoderHDL");

boolean (G4)

ancSampleln
boolaan [G4x1]
hoolean |—D_ dataln dataOut - 1.":- out. sampleCut
encStartin | start & [E41]
boolaan T . samplaconirg samplacontrol
encEndin = Er'j—aEIr.JEIEr;;'ncE:c cifl /=== chrlin r I cArlOut e out.ctd Ot
bockean '] ;
encyalidin | valid 1 wint 16
o b ftingSizaut ==
beoolaar o boolaan
ifingSizeln nextFrams i j
w16 HDL Algorithm
|l-l‘| encliftingSizeln

Verify Encoder Results

Convert the streaming data output of the block to frames and then compare them with the output of
the nrLDPCEncode function.

startIdx = find(encOut.ctrlOut.start.Data);
endIdx = find(encOut.ctrlOut.end.Data);

for ii = 1l:numFrames
encHDL{ii} = ldpc_dataExtraction(encOut.sampleQut.Data,liftingSize(ii),startIdx(ii),endIdx(1i:
encRef = nrLDPCEncode(msg{ii}',bgn(ii)+1);
error = sum(abs(encRef - encHDL{ii}));
fprintf(['Encoded Frame %d: Behavioral and '
'"HDL simulation differ by %d bits\n'],ii,error);
end

Behavioral and HDL simulation differ by 0 bits
Behavioral and HDL simulation differ by 0 bits
Behavioral and HDL simulation differ by 0 bits
: Behavioral and HDL simulation differ by 0 bits

Encoded Frame
Encoded Frame
Encoded Frame
Encoded Frame

A WN R

Generate Input Data for Decoder

Use the encoded data from the NR LDPC Encoder block to generate input log-likelihood ratio (LLR)
values for the NR LDPC Decoder block. Use channel, modulator, and demodulator system objects to
add some noise to the signal. Again, create vectors of bgn and liftingSize and convert the frames of
data to LLRs with a control signal that indicates the frame boundaries. decF rameGap accommodates
the latency of the NR LDPC Decoder block for bgn, liftingSize, and number of iterations. Use the
nextFrame signal to determine when the block is ready to accept the start of the next input frame.

3-60

LDPC Encode and Decode of Streaming Data

nVar 1.2;
chan comm.AWGNChannel('NoiseMethod', 'Variance', 'Variance',nVar);
bpskMod = comm.BPSKModulator;
bpskDemod = comm.BPSKDemodulator('DecisionMethod’,
"Approximate log-likelihood ratio', 'Variance',nVar);

algo = 'Normalized min-sum'; %{ Min-sum, 'Normalized min-sum' };
if strcmpi(algo, 'Min-sum')
alpha = 1;
else
alpha = 0.75;
end

numIter = 8;

decbgnIn = [];decliftingSizeIn = [];

rxLLR = {numFrames};

decSampleIn = [];decStartIn = [];decEndIn = [];decValidIn = [];

for ii=1:numFrames
mod = bpskMod(double(encHDL{ii}));
rSig = chan(mod);
rxLLR{ii} = fi(bpskDemod(rSig),1,6,0);

if serial

len = N(ii)* liftingSize(ii);

decFrameGap = numIter *7000 + liftingSize(ii) * K(ii);
else

len = N(ii)* ceil(liftingSize(ii)/64);

decFrameGap = numIter *1200;
end

decIn = ldpc_dataFormation(rxLLR{ii}',liftingSize(ii),N(ii),serial);

decSampleln = [decSampleln decIn zeros(size(decIn,l),decFrameGap)]; %#ok<*AGROW>
decStartIn = logical([decStartIn 1 zeros(l,len-1) zeros(1l,decFrameGap)l]);
decEndIn = logical([decEndIn zeros(1l,len-1) 1 zeros(1l,decFrameGap)l]);
decValidIn = logical([decValidIn ones(1,len) zeros(1l,decFrameGap)]);
decbgnIn = logical([decbgnIn repmat(bgn(ii),1,len) zeros(1l,decFrameGap)]);

decliftingSizeIn = uintl6([decliftingSizeIn repmat(liftingSize(ii),1,len) zeros(1l,decFrameGa
end

decSampleIn = timeseries(fi(decSampleln',1,6,0));
simTime = length(decValidIn);

Run Decoder Model

The HDL Algorithm subsystem contains the NR LDPC Decoder block. Running the model imports the
input signal variables decSampleln, decStartIn, decEndIn, decValidIn, decbgnlIn,
decliftingSizelIn, numIter, sampleTime, and simTime and exports a stream of decoded output
samples sampleOut along with control signal ctrlQut to the MATLAB workspace.

open_system('NRLDPCDecoderHDL");
if alpha ~=1

set param('NRLDPCDecoderHDL/HDL Algorithm/NR LDPC Decoder', 'Algorithm', 'Normalized min-sum')
else

set param('NRLDPCDecoderHDL/HDL Algorithm/NR LDPC Decoder', 'Algorithm', 'Min-sum');

3-61

3 Reference Page Examples

end
decOut = sim('NRLDPCDecoderHDL");

foeb (B4
detSampleln il i
boolaan [G4x1]
boclean I—b dataln dataCut wiout. sampleOut
decStartin B ztart 64 [B4x1]
boolean samplacontrgl samplacontrol
decEndin | ang>omple Control 4 B S ctrln ’ . clOut i out.ctriOut
bookaan Bus Creator — —_
decWalidin B valid] - k16 —
| g ft"ngaDut —]
boolaan L |bcolaan —
dechkgnin iftingSizeln nextFrame »—]

HDL Algorithm

wint 16

decliftingSizeln

Verify Decoder Results

[u]

Convert the streaming data output of the block to frames and then compare them with the output of
the nrLDPCDecode function.

startIdx = find(decOut.ctrlOut.start.Data);
endIdx = find(decOut.ctrlOut.end.Data);

for ii = l:numFrames
decHDL{ii} = ldpc_dataExtraction(decOut.sampleQut.Data,liftingSize(ii),startIdx(ii),endIdx(ii
decRef = nrLDPCDecode(double(rxLLR{ii}),bgn(ii)+1,numIter, 'Algorithm', 'Normalized min-sum', "
'"Termination', 'max');
error = sum(abs(double(decRef) - decHDL{ii}));
fprintf (['Decoded Frame %d: Behavioral and '
'"HDL simulation differ by %d bits\n'],ii,error);
end

Decoded Frame 1: Behavioral and HDL simulation differ by 0 bits
Decoded Frame 2: Behavioral and HDL simulation differ by 0 bits
Decoded Frame 3: Behavioral and HDL simulation differ by 0 bits
Decoded Frame 4: Behavioral and HDL simulation differ by 0 bits

See Also

Blocks
NR LDPC Decoder | NR LDPC Encoder

Functions
nrLDPCDecode | nrLDPCEncode

3-62

Estimate Channel Using Input Data and Reference Subcarriers

Estimate Channel Using Input Data and Reference Subcarriers

This example shows how to use the OFDM Channel Estimator block to estimate a channel using input
data and reference subcarriers. In this example model, the averaging and interpolation features are
enabled. The HDL Algorithm subsystem in this example model supports HDL code generation.

Set Input Data Parameters

Set up these workspace variables for the model to use. You can modify these values according to your
requirement.

rng('default');
numOFDMSym = 980;
numOFDMSymToBeAvg = 14;
interpolFac = 3;
maxNumScPerSym = 72;
numOFDMSymPerFrame = 140;
numScPerSym = 72;

Generate Sinusoidal Input Data Subcarriers

Use the numScPerSym and numOFDMSym variables to generate complex sinusoidal input data
subcarriers with their real and imaginary parts generated separately.

dataInGrid = zeros(numScPerSym, numOFDMSym) ;
for numScPerSymCount = 0:numScPerSym - 1
for numOFDMSymCount = 0:numOFDMSym - 1
realXgain = 1 + .2*sin(2*pi*numScPerSymCount/numScPerSym);
realYgain = 1 + .5*sin(2*pi*numOFDMSymCount/numOFDMSymPerFrame) ;
imagXgain = 1 + .3*sin(2*pi*numScPerSymCount/numScPerSym);
imagYgain = 1 + .4*sin(2*pi*numOFDMSymCount/numOFDMSymPerFrame) ;
dataInGrid(numScPerSymCount+1,numOFDMSymCount+1l) = realXgain*realYgain + 1li*(imagXgain*il
end
end
validIn = true(l,length(dataInGrid(:)));

figure(l);

surf(real(dataInGrid))

xLlabel('OFDM Symbols"')
ylabel('Subcarriers")
zlabel('Magnitude')

title('Input Data Grid (Real Part)')

figure(2);

surf(imag(dataInGrid))

xLlabel('OFDM Symbols"')
ylabel('Subcarriers")

zlabel('Magnitude')

title('Input Data Grid (Imaginary Part)')

3-63

Reference Page Examples

Input Data Grid (Real Part)

Magnitude

Subcarriers 0 o OFDM Symbols

3-64

Estimate Channel Using Input Data and Reference Subcarriers

Input Data Grid (Imaginary Part)

-
n

Magnitude

Subcarriers 0 o OFDM Symbols

Generate Reference Data Subcarriers

Generate reference data subcarriers.

refDataln = randsrc(size(dataInGrid(:),1),size(dataInGrid(:),2),[1 11);

refValidIn = boolean(zeros(1l,numOFDMSym*numScPerSym));

startRefValidIndex = randi(interpolFac,1,1);

for numOFDMSymCount = 1:numOFDMSym
refValidIn(startRefValidIndex+(numOFDMSymCount-1)*numScPerSym:interpolFac:numScPerSym*numOFDI

end

Generate Signal with Number of Subcarriers per Symbol

Generate a signal with the number of subcarriers per symbol.

numScPerSymIn = numScPerSym*true(1l,length(dataInGrid(:)));
resetSig = false(1l,length(dataInGrid(:)));

Run Simulink® Model

Run the model. Running the model imports the input signal variables from the MATLAB workspace to
the OFDM Channel Estimator block in the model.

modelname = 'genhdlOFDMChannelEstimatorModel';

open_system(modelname);
out = sim(modelname);

3-65

3 Reference Page Examples

chousbla =i 16_Eni0 (o)
HatalnGrid(:) Ppanvert | dataln
’ sfi16_En10 (o)
validin datalut | oubdataCut
chouibds =f16_EniD . -
eonvert | raiData
boolaan . "
refialidin ref\alid "
coubds ufix 17 . bookean
numScPerSymin | conven B numSubCarParSym validDut | outvalidOut
boodean
HOL Algorithm

Export Stream of Channel Estimates from Simulink to MATLAB® Workspace

Export the output of the OFDM Channel Estimator block to the MATLAB workspace. Plot the real part
and imaginary part of the exported block output.

simOut = out.dataOut.Data(out.validOut.Data);

N = length(simOut) - mod(length(simOut),numScPerSym);

temp = simOut(1l:N);

channelEstimateSimOut = reshape(temp,numScPerSym,length(temp)/numScPerSym);

figure(3);

surf(real(channelEstimateSimOut))
xlabel('OFDM Symbols')

ylabel('Subcarriers")

zlabel('Magnitude"')

title('Channel Estimator Output (Real Part)')

figure(4);

surf(imag(channelEstimateSimOut))

xlabel('OFDM Symbols')

ylabel('Subcarriers")

zlabel('Magnitude')

title('Channel Estimator Output (Imaginary Part)')

3-66

Estimate Channel Using Input Data and Reference Subcarriers

Magnitude

1.5 4

0.5

80

Channel Estimator Output (Real Part)

il [||:|l'
’I‘rl"! I |I il ||]r‘II I’#flr
D

| l'?ll' i
|||'|':l'f|':|[;||,'l”' i'#'

| ||:|" I'I ||||||
it

[Tt .I'Jr||||||r
|'|'|'|'I|'I|I'||"#'r’l.l' I JI:llfll
II|I|I|I|

80

40

40
20 20

Subcarriers 0 o OFDM Symbols

3-67

3 Reference Page Examples

3-68

Channel Estimator Output (Imaginary Part)

2 -
o 154 ;‘?;
g 'I#I il l“!
i | I {J
ég - | HI Q Imhlh' %IHI
) I||||| ||'|||II .‘;I I
it il .*
(4t
0.5 -
80
80
40 6o
40
20 20
Subcarriers 0 o OFDM Symbols

Estimate Channel Using MATLAB Function

Estimate the channel by using the channelEstReference function with the sinusoidal input data
subcarriers.

dataOutl = channelEstReference(...
numOFDMSymToBeAvg, interpolFac, numScPerSym, numOFDMSym,
dataInGrid(:),validIn, refDataln,refValidIn,numScPerSymIn);

matlabOut = dataOutl(:);

matOut = zeros(numel(matlabOut)*numScPerSym,1);

for ii= 1l:numel(matlabOut)

loadArray = [matlabOut(ii).dataOut; zeros((numel(matlabOut)-1)*numScPerSym,1)];

shiftArray = circshift(loadArray, (ii-1)*numScPerSym);

matOut = matOut + shiftArray;

end

Compare Simulink Block Output with MATLAB Function Output

Compare the OFDM Channel Estimator block output with channelEstReference function output.
Plot the output comparison as a real part and an imaginary part using separate plots.

figure('units', 'normalized’, 'outerposition',[0 0 1 1])
subplot(2,1,1)

plot(real(matOut(:)));

hold on;

plot(real(simOut(:)));

grid on

legend('MATLAB reference output', 'Simulink block output')

Estimate Channel Using Input Data and Reference Subcarriers

xlabel('Sample Index')
ylabel('Magnitude")
title('Comparison of Simulink Block and MATLAB Function (Real Part)')

subplot(2,1,2)

plot(imag(matOut(:)));

hold on;

plot(imag(simQut(:)));

grid on

legend('MATLAB reference output', 'Simulink block output')

xlabel('Sample Index')

ylabel('Magnitude")

title('Comparison of Simulink Block and MATLAB Function (Imaginary Part)')

sqnrRealdB
sqnrImagdB

10*1ogl0(double(var(real(simOut(:)))/abs(var(real(simOut(:)))-var(real(matOut(:))))
10*1ogl0(double(var(imag(simOut(:)))/abs(var(imag(simOut(:)))-var(imag(matOut(:))))

fprintf('\n OFDM Channel Estimator \n SQNR of real part: %.2f dB',sqnrRealdB);
fprintf('\n SQNR of imaginary part: %.2f dB\n',sqgnrImagdB);

OFDM Channel Estimator
SQNR of real part: 38.54 dB
SQNR of imaginary part: 37.77 dB

3-69

3 Reference Page Examples

Comparison of Simulink Block and MATLAB Func‘tlon (Real Part)

'o:

“'r| |'|I
r| H|J|““

il | 'ﬂ

II\
|‘|

-
p

-
N

Magnitude

=
=

o
@

MATLAB reference output
Simulink block output

||,
l‘

’t
I '*h |

| ”'I
4' ' V

'u J

|||J I

U
ll

|
|
J |

1000

3000
Sample Index

Comparison of Simulink Block and MATLAB Function (Imaginary Part)
T T

N

ﬁ" '1

| ||||
u‘lr‘||‘|

h :

Magnitude
S

0.

@

il
H“
|

0.

=

M"\’ |
|"'| l/ \ ‘f\ /

| |¢
|,‘II “ I
|u'|||'|‘|u .’"‘

il || \

'|||J||

M ||

Simulink block output

MATLAB reference output

0.4
1000

See Also

Blocks
OFDM Channel Estimator

3-70

3000
Sample Index

Modulate and Demodulate OFDM Streaming Samples

Modulate and Demodulate OFDM Streaming Samples

This example model shows how to use OFDM Modulator and OFDM Demodulator blocks. In this
model, an OFDM Modulator and an OFDM Demodulator block are connected back-to-back. The
OFDM parameters source parameter in these blocks is set to Input port, enabling you to
dynamically change the input values of these blocks. You can change these values using the script in
this example. These blocks support scalar and vector inputs. To verify the functionality of these
blocks, the input provided to the OFDM Modulator block is compared with the output of the OFDM
Demodulator block. The OFDMModDemod HDL subsystem in this example model supports HDL code
generation.

Set Input Data Parameters

Set up these workspace variables for the model to use. You can modify these values according to your
requirement. The example model uses these workspace variables datalIn, validIn, fftLen,
maxFFTLen, cpLen, numLG, numRG, numSymb, and DCNul1l to configure the OFDM Modulator and
OFDM Demodulator blocks.

fftLen = 64;
maxFFTLen = 128;
cpLen = 16;
numLG
numRG

r
, 2, 4, 8, 16, 32, or 64
if DCNull==
numActData
else
numActData

fftLen - (numLG+numRG+1);

fftLen - (numLG+numRG);
end

Generate Input Data Frames

Generate random frames of complex input data and a control signal that indicates the frame
boundaries.

rng default;
datalIn = complex(randn(numActData*numSymb, 1), randn(numActData*numSymb,1));
dataVec = []; % Store data arranged in vector form
presentSymbDataStartIndex = 0;
for ii = 1:numSymb
counter = 0;
for jj = l:ceil(numActData/vecLen)
if jj == ceil(numActData/vecLen)
numZerosTobeAppended = vecLen - (numActData-counter);
dataVec = [dataVec [dataln(presentSymbDataStartIndex+counter+(1l:vecLen-numZerosTobeA
else
dataVec = [dataVec dataln(presentSymbDataStartIndex+counter+(1l:veclLen))];
end
counter = counter + veclen;
end
presentSymbDataStartIndex = presentSymbDataStartIndex + numActData;
end

data = dataVec.';

3-71

3 Reference Page Examples

DeDDe2al

valid = boolean(ones(size(data,l1l),1)); % Valid signal generation

sampling time = 1;
stoptime = maxFFTLen*6*numSymb;

Run the Simulink® Model

Run the model to import the input signal variables datalIn, validIn, fftLen, maxFFTLen, cplLen,
numLG, numRG, numSymb, and DCNull from the workspace to the OFDM Modulator block. The OFDM
Modulator block returns OFDM-modulated output samples and a control signal. These OFDM-
modulated samples are fed to the OFDM Demodulator block, which returns OFDM demodulated
samples.

open_system('genhdlOFDMModDemodExample ")
sim('genhdlOFDMModDemodExample');

% Store valid data from Simulink model
dataOutl = dataOut.data;

simOut = dataOutl(:,:,validOut);
simOut = simOut(:);
z! e
bean
dats =fix16_En13 (c) [Bx1] |
ata data
Iaxﬂ readyCuthod poalsen

haalean

vald # validin

3-72

=fixZ3_En13
- dataCut
FFTLen . [8:1]

dataOut

CPLen : l) boolean .
- - walidOut » validOut

muamlLgSc

boolean
readyCut f—m-

mumBRgSc

OFDMModDemod

Compare OFDM Modulator Input with OFDM Demodulator Output

Compare the input data provided to the OFDM Modulator block with the output data generated from
the OFDM Demodulator block.

figure('units', 'normalized’, 'outerposition',[0 0 1 1])

subplot(2,1,1);

plot(real(dataIn(l:size(simOut))));

hold on

plot(squeeze(real(simOut)));

legend('Real part of reference data', 'Real part of demodulated data');
title('Comparison of OFDM Modulator Input with OFDM Demodulator Output - Real Part');
xlabel('OFDM Subcarriers');

ylabel('Real Part');

Modulate and Demodulate OFDM Streaming Samples

subplot(2,1,2)

plot(imag(dataIn(l:size(simOut))));
hold on

plot(squeeze(imag(simOut)))

legend('Imaginary part of reference data', 'Imaginary part of demodulated data');

title('Comparison of OFDM Modulator Input with OFDM Demodulator Output - Imaginary Part');
xlabel('OFDM Subcarriers');

ylabel('Imaginary Part');

Comparison of OFDM Meodulator Input with OFDM Demodulator Qutput - Real Part
4 T T T T
] Real parl of reference data
\ Real part of demodulated data|_|
|I| N
i
) A I
] o Il -
@ ol
o [' | |
3 YRR \ i
o4 \J ||f ""‘d', | |;'I'\I || \ -’\\ 7
" AN
| \ [ALY
{ U 111 N
| i |
y
| 1
0 20 40 60 80 100 120
OFDM Subcarriers
Comparison of OFDM Modulator Input with OFDM Demodulator Output - Imaginary Part
3 T T T T
— Imaginary part of reference data
r'n‘ Imaginary part of demodulated data
. |I" -
II
I I \ i
. | | B A .
e ! [[1 A A
& N | :‘I | AR Fa A
= | ANV IR AT (NI ARYAN YA
gor 5 I '/‘\I.' [‘|| /S VY | N
[=] \f N TRV [O Vi | ~/ | |
@ ¥ N oo oy A Vo TRV, Il \| |
£ A \ \| Iy | [V | il \
R \\ 1 N I | ! o
1] ! ‘, | |
1 \ |
1] (W
| 1]
2 \f b
V
3 | | | | |
0 20 40 60 80 100 120
OFDM Subcarriers
Blocks

OFDM Modulator | OFDM Demodulator

3-73

3 Reference Page Examples

Polar Encode and Decode of Streaming Samples

3-74

This example shows how to simulate the NR Polar Encode and Decode blocks and compare the
hardware-optimized results with the results from 5G Toolbox™ functions.

Generate Input Data for Encoder

Choose a series of input values for K and E. These values must be valid pairs supported by the 5G NR
standard. Generate random frames of input data and add a CRC codeword. This example uses uplink
mode, so each message has 11 CRC bits. Downlink messages have 24 CRC bits, and downlink DCI
messages require prepending 1s to the frame.

Convert the message frames to streams of Boolean samples and control signals that indicate the
frame boundaries. Generate input vectors of K and E values over time. The example model imports
the workspace variables encSampleln, encCtrlIn, encKfi, encEfi, sampleTime, and simTime.

For this example, the number of invalid cycles between frames is empirically chosen to accommodate
the latency of the NR Polar Encoder block for the specified K and E values. When the values of K and
E are larger than in this example, the number of invalid cycles between frames must be longer. Use
the nextFrame output signal of the block to determine when the block is ready to accept the start of
the next input frame.

K = [132; 132; 132; 54];

E = [256; 256; 256; 124];

numFrames = 4;

numCRCBits = 11;

idleCyclesBetweenSamples = 0;
idleCyclesBetweenFrames = 500;

samplesPerCycle = 1;

btwSamples = false(idleCyclesBetweenSamples,1);
btwFrames = false(idleCyclesBetweenFrames,1);

encKfi = [];
encEfi = [];
datalIn = {numFrames};
for ii = l:numFrames
msg = randi([0@ 1],K(ii)-numCRCBits,1);
msg = nrCRCEncode(msg, '11'); CRC poly is '11' for uplink and '24C' for downlink

encKfi = [encKfi;repmat([fi(K(ii),0,10,0);btwSamples],length(msg),1);btwFrames];

encEfi = [encEfi;repmat([fi(E(ii),0,14,0);btwSamples],length(msg),1);btwFrames];
dataIn{l,ii} = logical(msg);

end

[encSampleIn,encCtrlIn] = whdlFramesToSamples(...
dataln,idleCyclesBetweenSamples,idleCyclesBetweenFrames, samplesPerCycle);

sampleTime = 1;
simTime = length(encCtrlIn) + K(numFrames)*2; %#0ok<NASGU>

Run Encoder Model

The HDL Algorithm subsystem contains the NR Polar Encoder block. Running the model imports the
input signal variables from the workspace and returns a stream of polar-encoded output samples and
control signals that indicate the frame boundaries. The model exports variables sampleOut and
ctrlOut to the MATLAB workspace.

Polar Encode and Decode of Streaming Samples

pncSamplel

open_system('NRPolarEncodeHDL");
encOut = sim('NRPolarEncodeHDL");

ancCiriin

samplaln
boolzan
boolean data dataCut | vt sample Ot

boolaan || B E 51artqar"ple Control sampleconirol i aripirOul
— B end & - otrl feeeee ch — |EIZ-F L
[fxa] | alig Bus Creatar cirln —— ——otrlOut e = » out.ctriOut
ol ciu [[P :
ancki b lid =

ookean = <yalids
= E nextFrams Sample Conirol
5 - Bus Selector
encEfi E HOL Adgorithm nexiFrame
—

Verify Encoder Results

Convert the streaming data back to frames for comparison with the results of the 5G Toolbox™
nrPolarEncode function.

encHDL = whdlSamplesToFrames(encOut.sampleOut,encOut.ctrlOut);

for ii=1:numFrames
encRef = nrPolarEncode(double(dataIn{ii}),E(ii),10,false); % last two arguments needed for u
error = sum(abs(encRef - encHDL{ii}));
fprintf(['Encoded Frame %d: Behavioral and '
'"HDL simulation differ by %d bits\n'],ii,error);
end

Maximum frame size computed to be 256 samples.

Encoded Frame 1: Behavioral and HDL simulation differ by 0 bits
Encoded Frame 2: Behavioral and HDL simulation differ by 0 bits
Encoded Frame 3: Behavioral and HDL simulation differ by 0 bits
Encoded Frame 4: Behavioral and HDL simulation differ by 0 bits

Generate Input Data for Decoder

Use the encoded data to generate input log-likelihood ratios (LLRs) for the NR Polar Decoder block.
Use channel, modulator, and demodulator System objects to add noise to the signal.

Again, create vectors of K and E values, and convert the frames of data to streaming samples with
control signals. The example model imports the workspace variables decSampleIn, decCtrlIn,
decKfi, decEfi, sampleTime, and simTime.

For this example, the number of invalid cycles between frames is empirically chosen to accommodate
the latency of the NR Polar Decoder block for the specified K and E values. When the values of K and
E are larger than in this example, the number of invalid cycles between frames must be longer. Use
the nextFrame output signal of the block to determine when the block is ready to accept the start of
the next input frame.

nVar = 0.7;
chan = comm.AWGNChannel('NoiseMethod', 'Variance', 'Variance',nVar);
bpskMod = comm.BPSKModulator;
bpskDemod = comm.BPSKDemodulator('DecisionMethod’,
"Approximate log-likelihood ratio', 'Variance',nVar);
more idle cycles greater list lengths. max 5251 for list 4.
% 1lst pkt LL=8 just over 5000, not sure what is max?

)
©

3-75

3 Reference Page Examples

ecSampilelr

% should i make this a more simulink-y example to show how to use the fifo
% with the nextframe signal?
idleCyclesBetweenFrames = 6000;
btwFrames = false(idleCyclesBetweenFrames,1);
decKfi = [1;
deckfi = [];
rxLLR = {numFrames};
rxLLRfi = {numFrames};
for ii=1:numFrames
mod = bpskMod(double(encHDL{ii}));
rSig = chan(mod);
rxLLR{1,1ii} = bpskDemod(rSig);
rxLLRfi{l,ii} = fi(rxLLR{1,ii},1,6,0);
decKfi = [decKfi;repmat([fi(K(ii),0,10,0);btwSamples],length(rSig),1);btwFrames];
decEfi = [decEfi;repmat([fi(E(ii),0,14,0);btwSamples],length(rSig),1);btwFrames];
end

[decSampleIn,decCtrlIn] = whdlFramesToSamples(...
rxLLRfi,idleCyclesBetweenSamples,idleCyclesBetweenFrames, samplesPerCycle);

simTime = length(decCtrlIn) + K(numFrames)*2;
Run Decoder Model

The HDL Algorithm subsystem contains the NR Polar Decoder block configured to use a list length of
eight. Running the model imports the input signal variables from the workspace and returns a stream
of decoded output samples and control signals that indicate the frame boundaries. The model exports
variables sampleQut, ctrlOut, and errOut to the MATLAB workspace. Select the valid values of
the errQut signal by using the ctrlQut.valid signal.

open_system('NRPolarDecodeHDL");
decOut = sim('NRPolarDecodeHDL");

sfxfi

samplaln bodean npleC
B] b e plaOut
booizan J booiSf >
boolaan || pEpotea™|statk o~ L samplaconiral N N samplaconitrplbagies baoolean (3)
decCtriln —p |: — E-I'-:I"!B I:'Eé;?‘_ﬂ_c ctrl = d e 1 = ; out.ctdOut
[1] P validd = : — ufix 10 i : chitito Lm |...J =
deckfi {2 1 " 3 svalids
ix14 :-:-:-lean »| out.emrOut
decEfi > 4 arrout v :
E e R
|1-"| HOL Algorithm

3-76

Verify Decoder Results

Convert the streaming samples returned from the Simulink model into frames for comparison with
the results of the 5G Toolbox™ nrPolarDecode function.

The nrPolarDecode function returns the decoded message, including 24 recalculated CRC bits. The
NR Polar Decoder block returns the decoded message without the CRC bits, and returns the CRC
status separately on the err port.

The block and function output bits can differ for frames that report a decoding error. The block can
return a decoding error in cases when the function successfully decodes the message. The overall
decoding performance of the block is very close to that of the function.

decHDL
errHDL

whdlSamplesToFrames (decOut.sampleOut,decOut.ctrlOut);
decOut.errQut(decOut.ctrlOut(:,2));

Polar Encode and Decode of Streaming Samples

L = 8;
for ii = l:numFrames

decRef = nrPolarDecode(rxLLR{1,ii},K(ii),E(ii),L,10,false,11l); % last three arguments needed

[decRef,errRef] = nrCRCDecode(decRef,'11'); % CRC poly is '11' for uplink,

error = sum(abs(decRef - decHDL{1l,ii}));
fprintf(['Decoded Frame %d: Behavioral and '

'"HDL simulation differ by %d bits\n'],ii,error);
msg = dataIn{l,ii}(1l:(length(dataIn{ii})-numCRCBits));
loopErr = sum(abs(msg - decHDL{1,ii}));

fprintf(['The decoded output message from the HDL simulation',...
' differs from the input message by %d bits \n'],loopErr);

errRef = any(errRef);
if ~errHDL(ii) && ~errRef

'24C"' for downlin

fprintf('HDL and behavioral simulations successfully decoded the message. \n');

elseif errHDL(ii) && ~errRef

fprintf(['Behavioral simulation successfully decoded the message,',...

" but HDL sim reported a decode error\n'l]);
elseif ~errHDL(ii) && errRef

fprintf (['HDL simulation successfully decoded the message,',...
' but behavioral simulation reported a decode error\n'l]l);

else

fprintf('HDL and behavioral simulations both reported a decode error. \n');

end
end

Maximum frame size computed to be 121 samples.
Decoded Frame 1: Behavioral and HDL simulation differ by 0 bits
The decoded output message from the HDL simulation differs from

HDL and behavioral simulations successfully decoded the message.

Decoded Frame 2: Behavioral and HDL simulation differ by 0 bits
The decoded output message from the HDL simulation differs from

HDL and behavioral simulations successfully decoded the message.

Decoded Frame 3: Behavioral and HDL simulation differ by 0 bits
The decoded output message from the HDL simulation differs from

HDL and behavioral simulations successfully decoded the message.

Decoded Frame 4: Behavioral and HDL simulation differ by 0 bits
The decoded output message from the HDL simulation differs from

HDL and behavioral simulations successfully decoded the message.

See Also

NR Polar Decoder | NR Polar Encoder | nrPolarDecode | nrPolarEncode

the

the

the

the

input

input

input

input

message

message

message

message

by 0 bits

by 0 bits

by 0 bits

by 0 bits

3-77

3 Reference Page Examples

NR CRC Encode and Decode Streaming Data

This example shows how to use the NR CRC Encoder and NR CRC Decoder Simulink® blocks and
compare the hardware-optimized results with the results from the 5G Toolbox™ functions
nrCRCEncode (5G Toolbox) and nrCRCDecode (5G Toolbox), respectively. These blocks support
scalar and vector inputs. The NR CRC Encoder and NR CRC Decoder blocks support hardware code
generation.

Generate Input Data

Generate random frames of input data and a control signal that indicates the frame boundaries. The
frame gap accommodates the latency of the NR CRC Encoder block.

CRCType = 'CRC24A"';
numFrames = 4;
scalar = true;

o°

parallel = false;

o® o°

serial architecture
msg = {numFrames};
dataln = [];
encStartIn = [];
encéndIn = [];
encValidIn = [];
[poly,crcLen] = NRCRCEncodeAndDecoderHDLInitScript (CRCType);
if parallel
listN = divisors(crcLen);
dataWidth = randsrc(1,1,listN(2:end));
else
dataWidth = 1;

o°

true for scalar inputs and false

true for parallel architecture al

Factors of length of CRC polynom

end
frameGap = 120; % Frame gap selected based on CRCT
for ii = l:numFrames

len = randsrc(1,1,1:1000);
frameLen = len*dataWidth;
msg{ii} = randi([0 1],1,framelLen);

% Generate data based on the selected dataWidth
if scalar

data = reshape(msg{ii},dataWidth,len);

encIn = zeros(1l,size(data,2));

for i = 1l:size(data,?2)

encIn(i) = bi2de(data(:,i)"', 'left-msb'); %#ok<*SAGROW>

end

dataIn = fi([dataIn encIn zeros(size(encIn,l),frameGap)],0,dataWidth,0);
else

encIn = reshape(msg{ii},dataWidth,len); %#ok<*UNRCH>

dataln = logical([dataIn encIn zeros(size(encIn,l),frameGap)]);
end
encStartIn = logical([encStartIn 1 zeros(1l,len-1) zeros(1l,frameGap)]);
encéEndIn = logical([encEndIn zeros(1l,len-1) 1 zeros(1l,frameGap)l]);
encValidIn = logical([encValidIn ones(1,len) zeros(1l,frameGap)]);

end

encSampleIn = timeseries(dataln');

3-78

NR CRC Encode and Decode Streaming Data

sampleTime = 1;
simTime = length(encValidIn);

Run the Model

The HDLNRCRCEncodeDecode subsystem contains HDL NR CRC Encoder and HDL NR CRC Decoder
subsystems that contain NR CRC Encoder and NR CRC Decoder blocks, respectively. Running the
model imports the input signal variables encSampleln, encStartIn, encEndIn, and encValidIn
and exports variables encSampleOut and encCtrl0ut to the MATLAB® workspace.

open_system('NRCRCEncodeAndDecodeHDLModel ") ;

set param('NRCRCEncodeAndDecodeHDLModel/HDLNRCRCEncodeDecode/HDL NR CRC Encoder/NR CRC Encoder',
set param('NRCRCEncodeAndDecodeHDLModel/HDLNRCRCEncodeDecode/HDL NR CRC Decoder/NR CRC Decoder',
modelOut = sim('NRCRCEncodeAndDecodeHDLModel"');

ufize 1

datalut | Ol e SampleCiut

ufi 1

| dataln
dataln
data

5 _ oul. decStartOul
boodeaan ' boolian
encStartin

<star>

samplacontrol I
start cilOut === 1, | jWe_Cﬁ!I auldec ut
[BugiEelactor

start

ancSarmpleln

D2d3an

encEndin —|_> : :-:-:.?:n Pt dechaligOul
Sample Contro Samplacy <valid=
- and . ctrl === clriin L
end Bus Creator ctiin 24
arrJut
boolaan
ancialidin | valid
|1-I'| walid HDOLMRCRCEncodaDecode

Verify Encoder Results

The HDL NR CRC Encoder subsystem contains the NR CRC Encoder block. Convert the streaming
data output of the NR CRC Encoder block to frames, and then compare the output frames with the
output of the nrCRCEncode 5G Toolbox function.

encOut = squeeze(modelOut.encSampleOut.Data);
startldx = find(modelOut.encCtrlOut.start.Data);
endIdx = find(modelOut.encCtrlOut.end.Data);
encValidOut = squeeze(modelOut.encCtrlOut.valid.Data);
vector = ~scalar && parallel;

for ii = l:numFrames
refEncBits{ii} = nrCRCEncode(msg{ii}',poly);
% Extract actual encoded bits from output
idx = startIdx(ii):endIdx(ii);
if (vector) For vector inputs
encBits encOut(:,idx);
encBits encBits(:,encValidOut(idx));
actEncBits{ii} = encBits(:);
else
encBits = encOut(idx);

o°

3-79

3 Reference Page Examples

encBits encBits(encValidOut(idx));

encBits dec2bin(encBits,dataWidth)-'0";

actEncBits{ii} = reshape(encBits',length(refEncBits{ii}),1);
end
error = sum(abs(refEncBits{ii}-double(actEncBits{ii})));
fprintf(['CRC-encoded frame %d: Behavioral and '

'"HDL simulation differ by %d bits\n'],ii,error);

end

CRC-encoded frame
CRC-encoded frame
CRC-encoded frame
CRC-encoded frame

Behavioral and HDL simulation differ by 0 bits
Behavioral and HDL simulation differ by 0 bits
Behavioral and HDL simulation differ by 0 bits
Behavioral and HDL simulation differ by 0 bits

AP WNRE

Verify Decoder Results

The HDL NR CRC Decoder subsystem contains the NR CRC Decoder block. The HDL NR CRC
Encoder subsystem outputs are provided as an input to the HDL NR CRC Decoder subsystem. The
HDL NR CRC Decoder subsystem exports a stream of decoded output samples decSampleOut and
decErrOut along with a control signal decCtrlOut to the MATLAB workspace. Compare them with the
output of the nrCRCDecode function.

dataOut = squeeze(modelOut.decSampleQut.Data);
errOut = squeeze(modelOut.decErrOut.Data);
startIdx = find(modelOut.decStartOut.Data);
endIdx = find(modelOut.decEndOut.Data);
validOut = squeeze(modelOut.decValidOut.Data);

for ii = l:numFrames
[refDecBits{ii}, refErr{ii}] = nrCRCDecode(double(actEncBits{ii}),poly);
% Extract actual decoded bits from output
idx = startIdx(ii):endIdx(ii);
if (vector) % For vector inputs
dataOutTmp = dataOut(:,idx);
validOutTmp = validOut(:,idx);
decBits = dataOutTmp(:,validOutTmp);
actDecBits{ii} = decBits(:);
else
dataOutTmp = dataOut(idx);
validOutTmp = validOut(idx);
decBits = dataOutTmp(validOutTmp);
decBits = dec2bin(decBits,datawWidth) - '0';
actDecBits{ii} = reshape(decBits',length(refDecBits{ii}),1);
end
actErr{ii} errOut(endIdx(ii));
error_data sum(abs(refDecBits{ii} - double(actDecBits{iil})));
error_err = double(refErr{ii}) - double(actErr{ii});
fprintf(['CRC-decoded frame %d: Behavioral and '
"HDL simulation differ by %d bits and %d errors\n'],ii,error data,error_err);

end

CRC-decoded frame 1: Behavioral and HDL simulation differ by 0 bits and 0 errors
CRC-decoded frame 2: Behavioral and HDL simulation differ by 0 bits and 0 errors

3-80

NR CRC Encode and Decode Streaming Data

CRC-decoded frame 3: Behavioral and HDL simulation differ by 0 bits and 0 errors
CRC-decoded frame 4: Behavioral and HDL simulation differ by 0 bits and 0 errors

See Also

Blocks
NR CRC Decoder | NR CRC Encoder

Functions
nrCRCDecode | nrCRCEncode

3-81

3 Reference Page Examples

Equalize OFDM Data Using Channel Estimates

This example shows how to use the OFDM Equalizer block to equalize data subcarriers using channel
estimates. In this example, the model uses the first frame to estimate the channel, stores the
estimates, and equalizes the remaining frames using the stored channel estimates. The HDL
Algorithm subsystem in this example supports HDL code generation.

Set Input Data Parameters

Set up workspace variables for the model to use. You can modify these values according to your
requirements.

rng('default');
numFrames = 6;
numOFDMSymPerFrame
maxLenChEstiPerSym
numSubCarPerSym = 72;

hEstLen = numSubCarPerSym * numOFDMSymPerFrame;
totNumOFDMSymbols = numFrames * numOFDMSymPerFrame;

Number of frames

Number of OFDM symbols per frame

Maximum length of channel estimates per syi
Number of subcarriers per OFDM symbol
Channel estimate length

Total number of OFDM symbols

140;
14400;

d® of o° o o° o°

Generate Sinusoidal Input Data Subcarriers

Use the hEstLen and numOFDMSym variables to generate complex sinusoidal input data subcarriers
with their real and imaginary parts generated separately. Plot the input as a real part and an
imaginary part using separate plots.

dataInGrid = zeros(numSubCarPerSym, totNumOFDMSymbols) ;
for subCarCount = 0:numSubCarPerSym-1
for numOFDMSymCount = 0:totNumOFDMSymbols-1

realXgain = 1 + .2*sin(2*pi*subCarCount/numSubCarPerSym);
realYgain 1 + .5*sin(2*pi*numOFDMSymCount/numOFDMSymPerFrame) ;
imagXgain 1 + .3*sin(2*pi*subCarCount/numSubCarPerSym);

imagYgain = 1 + .4*sin(2*pi*numOFDMSymCount/numOFDMSymPerFrame) ;
dataInGrid(subCarCount+1, numOFDMSymCount+1) = realXgain*realYgain + 1li*(imagXgain*imagYg
end
end
validIn = true(1l,length(dataInGrid(:)));

% Normalize data subcarriers to make signal power unity
datalInGrid = datalInGrid./sqrt(mean(abs(datalnGrid).”2,'all'));

figure(l);

surf(real(dataInGrid))

xLlabel('OFDM Symbols')
ylabel('Subcarriers")
zlabel('Magnitude"')

title('Input Data Grid (Real Part)')

figure(2);

surf(imag(dataInGrid))

xLlabel('OFDM Symbols"')
ylabel('Subcarriers")

zlabel('Magnitude"')

title('Input Data Grid (Imaginary Part)')

3-82

Equalize OFDM Data Using Channel Estimates

Magnitude

Subcamiers

Input Data Grid (Real Part)

0 o0 OFDM Symbols

3-83

3 Reference Page Examples

Input Data Grid (Imaginary Part)

Magnitude

Subcarriers 0 o OFDM Symbols

Generate Channel Estimates using MATLAB® Function

Generate the reference data subcarriers using the variables numOFDMSymToBeAvg, interpolFac,
and numScPerSym. Use the channelEstReferenceForEqualizer function to generate the
channel estimates hEstIn.

numOFDMSymToBeAvg = 1;

interpolFac = 1;

dataInForChannelEsti = dataInGrid(:,1:numOFDMSymPerFrame);
validInForChanEsti = validIn(1l:numSubCarPerSym*numOFDMSymPerFrame);

Number of OFDM symbols to be
Interpolation factor

%
%

numScPerSymIn = numSubCarPerSym*true(1l,length(dataInForChannelEsti(:)));

refDatalIn = randsrc(size(dataInForChannelEsti(:),1),size(dataInForChannelEsti(:),2),[1 11);

refValidIn = boolean(zeros(1l,numOFDMSymPerFrame*numSubCarPerSym));

startRefValidIndex = randi(interpolFac,1,1);

for numOFDMSymCount = 1:numOFDMSymPerFrame
refValidIn(startRefValidIndex+(numOFDMSymCount-1)*numSubCarPerSym:interpolFac:numSubCarPerSyi

end

dataOutl = channelEstReferenceForEqualizer(
numOFDMSymToBeAvg, interpolFac, numSubCarPerSym, numOFDMSymPerFrame,
dataInForChannelEsti(:),validInForChanEsti, refDataln,refValidIn,numScPerSymIn);

matlabOut = dataOutl(:);

hEstIn = zeros(numel(matlabOut)*numSubCarPerSym*numOFDMSymToBeAvg,1);

for ii= l:numel(matlabOut)
loadArray = [matlabOut(ii).dataOut; repmat(matlabOut(ii).dataOut, [numOFDMSymToBeAvg-1 1]); z

3-84

Equalize OFDM Data Using Channel Estimates

shiftArray = circshift(loadArray, (ii-1)*numSubCarPerSym*numOFDMSymToBeAvqg) ;
hEstIn = hEstIn + shiftArray;
end

% Repeat hEstIn for dataln generation
hEstInForDataln = repmat(hEstIn,numFrames,1);

% Normalize channel estimates to make signal power unity
hEstIn = hEstIn./sqrt(mean(abs(hEstIn).”2,'all"));
hEstIn = [hEstIn; hEstIn(end)*ones((hEstLen*((totNumOFDMSymbols/numOFDMSymPerFrame)-1)),1)1];

% Generate noise samples
n = (1/sqrt(2))*(randn(length(dataInGrid(:)),1l)+1li*randn(length(dataInGrid(:)),1)); % white gaus:

SNR = 40;

% Calculate noise variance

nVar = (10”(-SNR/10));

noiseVarIn = (10"(-SNR/10))*ones(1l,length(dataInGrid(:)));

modelname = 'genhdlOFDMEqualizerModel"';
open_system(modelname) ;

EqMdUsed = get param('genhdlOFDMEqualizerModel/HDL Algorithm/OFDM Equalizer', 'EqualizationMethod
if strcmp(EqMdUsed, 'ZF')
% ZF equalization
datalIn = hEstInForDataln.*dataInGrid(:);
else
% MMSE equalization
dataln = hEstInForDataln.*dataInGrid(:) + (n.*(sqrt(nVar)))./(sqrt(var(n)));
end
% Generate signal with channel estimate length per symbol
hEstLenIn = hEstlLen*true(1l,length(dataInGrid(:)));
loadhEst logical([1 zeros(1l,length(dataInGrid(:))-1)]);
resetSig false(l,length(dataInGrid(:)));

3-85

3 Reference Page Examples

3-86

dataln | convert | dataln
hEstin | convert | HEst
dataOut | aiibdatalut
noiseVarln B convert | noiselar
validin | boolean P validin
hEsiLenln | convert p| HEstLen
validOut e outvalidOu
loadhEst boolean p{ LoadhEst
resetSig boolean P ezt

HDL Algorithm

Run Simulink® Model

Running the model imports the input signal variables from the MATLAB workspace to the OFDM
Equalizer block in the model.

out = sim(modelname);

Export Stream of Equalized Data from Simulink to MATLAB Workspace

Export the output of the OFDM Equalizer block to the MATLAB workspace. Plot the real part and
imaginary part of the exported block output.

simOut = out.datalOut.Data(out.validOut.Data);

N = length(simOut)-mod(length(simOut),numSubCarPerSym);

temp = simOut(1l:N);

EqualizerSimOut = reshape(temp,numSubCarPerSym,length(temp)/numSubCarPerSym);

figure(3);

surf(real(EqualizerSimQut))

xLlabel('OFDM Symbols')
ylabel('Subcarriers")

zlabel('Magnitude"')

title('OFDM Equalizer OQutput (Real Part)')

figure(4);

Equalize OFDM Data Using Channel Estimates

surf(imag(EqualizerSimQut))
xLlabel('OFDM Symbols"')
ylabel('Subcarriers')

zlabel('Magnitude"')
title('OFDM Equalizer Output (Imaginary Part)')

OFDM Equalizer Output (Real Part)

Magnitude

Subcarmiers 0 o OFDM Symbols

3-87

3 Reference Page Examples

OFDM Equalizer Output (Imaginary Part)

Magnitude

Subcarriers 0 o OFDM Symbols

Perform Equalization Using MATLAB

Equalize the channel with equalization equations by using MATLAB.

if strcmp(EgMdUsed, 'ZF')
% ZF equalization
matOut = dataln./hEstInForDataln;
else
% MMSE equalization
matOut = (1./(conj(hEstInForDataln).*hEstInForDataln+nVar)).*(conj(hEstInForDatalIn)).*dataln

end

Compare Simulink Block Output with MATLAB Output

Compare the OFDM Equalizer block output with the MATLAB output. Plot the output comparison as a
real part and an imaginary part using separate plots.

figure('units', 'normalized', 'outerposition', [0 ©@ 1 1])

subplot(2,1,1)

plot(real(matOut(:)));

hold on;

plot(real(simOut(:)));

grid on

legend('MATLAB reference output', 'Simulink block output')
xlabel('Sample Index')

ylabel('Magnitude")

title('Comparison of Simulink Block and MATLAB Function (Real Part)')

3-88

Equalize OFDM Data Using Channel Estimates

subplot(2,1,2)

plot(imag(matOut(:)));

hold on;

plot(imag(simQut(:)));

grid on

legend('MATLAB reference output','Simulink block output')

xlabel('Sample Index')

ylabel('Magnitude")

title('Comparison of Simulink Block and MATLAB Function (Imaginary Part)')

sqnrRealdB
sqnrImagdB

10*1ogl0(double(var(real(simOut(:)))/abs(var(real(simOut(:)))-var(real(matOut(:)))

)
10*1ogl0(double(var(imag(simOut(:)))/abs(var(imag(simOut(:)))-var(imag(matOut(:))))

fprintf('\n OFDM Equalizer \n SQNR of real part: %.2f dB',sgnrRealdB);
fprintf('\n SQNR of imaginary part: %.2f dB\n',sqgnrImagdB);

OFDM Equalizer
SQNR of real part: 36.56 dB
SQNR of imaginary part: 42.16 dB

3-89

3 Reference Page Examples

3-90

12

Magnitude
[=1
[=+]

14
@

04

Comparison of Simulink Block and MATLAB Function (Real Part)
T T T T

Simulink block output

T
MATLAB reference output

0.2

Sample Index

«10%

Magnitude
o
[==]

o
@

0.4

Comparison of Simulink Block and MATLAB Function (Imaginary Part)
T T T T

Simulink block output

T
MATLAB reference output

02

See Also

Blocks

Sample Index

OFDM Channel Estimator

Functions

lteEqualizeMMSE | lteEqualizeZF | nrEqualizeMMSE

%10%

LDPC Decode Streaming Data for Multiple Code Rates with Early Termination

LDPC Decode Streaming Data for Multiple Code Rates with
Early Termination

This example shows how to use multiple code rates and early termination criteria features in the NR
LDPC Decoder Simulink® block. The input to the block is generated using the nrLDPCDecode (5G
Toolbox) MATLAB® function and the output of the block is compared with the input of the function.
In this example, you can select either the min-sum or normalized min-sum algorithm for the decoding
operation.

Generate Input Data

Choose a series of input values for the base graph number (bgn) and liftingSize according to the 5G
NR standard and generate the corresponding input vectors for those values. Use the encoded data
from the nrLDPCEncode function to generate input log-likelihood ratio (LLR) values for the NR LDPC
Decoder block. Use channel, modulator, and demodulator System objects to add noise to the signal.
Again, create vectors of bgn and 1iftingSize, and then convert the frames of data to LLRs with a
control signal that indicates the frame boundaries. The decFrameGap accommodates the latency of
the NR LDPC Decoder block for base graph number, liftingSize, and number of iterations. Use the
nextFrame output signal to determine when the block is ready to accept the start of the next input
frame.

bgn = [1; 0; 0; 1];

liftingSize = [4; 384; 144; 208];

numRows = [6; 38; 24; 10];

numFrames = 4;

serial = false; % true for serial inputs and false for parallel inputs

msg = {numFrames};
K=11;
N=1[];
for ii = l:numFrames
if bgn(ii) ==
K(ii) = 22;
else
K(ii) = 10;
end
N(ii) = numRows(ii) + K(ii)-2;
frameLen = liftingSize(ii)*K(ii);
msg{ii} = randi([0 1], framelLen,l);
encTmp = nrLDPCEncode(msg{ii},bgn(ii)+1);
encOut{ii} = encTmp(1l:N(ii)*1iftingSize(ii));
end
nVar = 0.5;
chan = comm.AWGNChannel('NoiseMethod', 'Variance', 'Variance',nVar);

bpskMod = comm.BPSKModulator;
bpskDemod = comm.BPSKDemodulator('DecisionMethod’,
"Approximate log-likelihood ratio', 'Variance',nVar);

algo = 'Min-sum'; % min-sum, 'normalized min-sum'
if strcmpi(algo, 'Min-sum')

alpha = 1;
else

alpha = 0.75;

3-91

3 Reference Page Examples

3-92

end

numIter = 8;
decbgnIn = [];
decliftingSizeIn = [];
rxLLR = {numFrames};
decSamplelIn = [];
decStartIn =
decEndIn = []
decValidIn =
decnumRows =

for ii=1:numFrames
mod = bpskMod(double(encOut{ii}));
rSig = chan(mod);
rxLLR{ii} = fi(bpskDemod(rSig),1,4,0);

if serial
len = N(ii)*1iftingSize(ii); %#ok<*UNRCH>
decFrameGap = numIter*7000 + liftingSize(ii)*K(ii);
else
len = N(ii)*ceil(liftingSize(ii)/64);
decFrameGap = numIter*1200;
end

decIn = ldpc_dataFormation(rxLLR{ii}',liftingSize(ii),N(ii),serial);

decSampleIn = [decSampleln decIn zeros(size(decIn,l),decFrameGap)]; %#ok<*AGROW>
decStartIn = logical([decStartIn 1 zeros(1l,len-1) zeros(1l,decFrameGap)]);
decEndIn = logical([decEndIn zeros(1l,len-1) 1 zeros(1l,decFrameGap)l]);
decValidIn = logical([decValidIn ones(1l,len) zeros(1l,decFrameGap)]);
decbgnIn = logical([decbgnIn repmat(bgn(ii),1,len) zeros(1l,decFrameGap)]);
decliftingSizeIn = uintl6([decliftingSizeIn repmat(liftingSize(ii),1,len) zeros(1l,decFrameGa
decnumRows = fi([decnumRows repmat(numRows(ii),1,len) zeros(1l,decFrameGap)],0,6,0);
end

decSampleIn = timeseries(fi(decSampleln',1,4,0));
sampleTime = 1;

simTime = length(decValidIn);
Run Simulink Model

The HDL Algorithm subsystem contains the NR LDPC Decoder block. Running the model imports the
input signal variables decSampleln, decStartIn, decEndIn, decValidIn, decbgnlIn,
decliftingSizelIn, numIter, sampleTime, and simTime and exports a stream of decoded output
samples sampleQut along with a control signal ctrl10ut to the MATLAB workspace.

open_system('NRLDPCDecoderCodeRateHDL");
if alpha ~=1

set _param('NRLDPCDecoderCodeRateHDL/HDL Algorithm/NR LDPC Decoder', 'Algorithm', 'Normalized m.
else

set param('NRLDPCDecoderCodeRateHDL/HDL Algorithm/NR LDPC Decoder', 'Algorithm', 'Min-sum');
end
decOut = sim('NRLDPCDecoderCodeRateHDL");

LDPC Decode Streaming Data for Multiple Code Rates with Early Termination

et (64) boolean [G4ET
docsamaien | dataln dataCut [E—'ixF- II.It.SEITIDIECI ut
samplacorntyol
bocban | ot e
F— -y - o cirl Out out.ctrOut
boohaan -
amiple Control wan k16 . \
decEndin t:me:; B"dggus Creator G - HtingSizaOut | out liftingSize
dacValidin P valid » bgn . : -
" actiber | outactlter
boolean
decbgnin g liflingSizeln] |Eociean
- parityCheck p out.parCheck
o
decliftingSizeln
bookzan
. nmRows nextFrams out.nextFrame
LHH

Compare Simulink Block Output with MATLAB Function Input

Convert the streaming data output of the NR LDPC Decoder block to frames and then compare the
frames with the input of the nrLDPCEncode function.

startIdx
endIdx

for ii 1:numFrames

decHDL{ii} = ldpc_dataExtraction(decOut.sampleQut.Data,liftingSize(ii),startIdx(ii),endIdx(ii
sum(abs (double(msg{ii})-decHDL{ii}));

error

find(decOut.ctrlOut.start.Data);
find(decOut.ctrlOut.end.Data);

fprintf(['Decoded frame %d: Output data differs by %d bits\n'],ii,error);
iter tmp = squeeze(decOut.actIter.Data);

actIter{ii}

iter tmp(startIdx(ii));

fprintf(['Actual iterations taken to decode the frame: %d \n'],actIter{ii});

end

Decoded frame 1: Output
Actual iterations taken
Decoded frame 2: Output
Actual iterations taken
Decoded frame 3: Output
Actual iterations taken
Decoded frame 4: Output
Actual iterations taken

See Also

Blocks
NR LDPC Decoder

Functions
nrLDPCEncode

data differs by 0 bits
to decode the frame: 2
data differs by 0 bits
to decode the frame: 2
data differs by 0 bits
to decode the frame: 2
data differs by 0 bits
to decode the frame: 3

3-93

Featured Examples

4 reatured Examples

Sample Rate Conversion for an LTE Receiver

4-2

This example shows how to design and implement sample rate conversion for an LTE receiver front
end. The model is compatible with the Wireless HDL Toolbox™ receiver reference applications, and
supports HDL code generation with HDL Coder™.

Introduction

The “LTE HDL Cell Search” on page 5-57, “LTE HDL MIB Recovery” on page 5-92, and “LTE HDL
SIB1 Recovery” on page 5-74 reference applications require an input sampling rate of 30.72 Msps.
In practice, the sampling rate presented to hardware may differ from this, for example due to choice
of components or system design decisions. Therefore, sample rate conversion may be required to
integrate these reference applications into a larger system. The model shown in this example
converts from 125 Msps to 30.72 Msps using two FIR Decimation filters and a Farrow rate converter.
The rate change from 125 Msps to 30.72 Msps was deliberately chosen because it is not trivial to
implement yet represents an example of the type of rate change often required in a radio receiver.

Sample Rate Converter Design Overview

The conversion from 125 Msps to 30.72 Msps corresponds to a rate change factor of 0.24576. This is
implemented with the filter chain shown. First, the input signal is decimated by two (i.e. a rate
change of 1/2) using a halfband filter. Next, a Farrow rate converter is used to make a fine adjustment
to the sample rate by a factor of 1565/1592 = 0.983. Last, a decimating FIR filter implements the
final decimate-by-two stage.

sample rate converter

input output to LTE Rx
@ 125 Msps 62.5 Msps 61.44 Msps @ 30.72 Msps
data ——— stage_ 1: —- Stage 2: — stage 3 —— (31E
) FIR Decimator Farrow Rate FIR Decimator)
valid —* (Halfband) " Converter " T+ vaid

1565
1592

b =

1
rate change: 5

The reasons behind this choice of filters is as follows:

1 The first filter stage can be done efficiently with a halfband filter. The subsequent filter then has
two cycles available per input sample to implement resource sharing.

2 A Farrow rate converter was chosen to implement the fine adjustment stage due to the high rate
change resolution achievable with this approach. This leads to a flexible design which can be
readily modified to implement other rate changes.

3 Farrow rate converters are expensive in terms of multipliers. This block was placed second in the
filter chain, as this option resulted in the least resource utilization while still meeting the
specification. If the filter was first in the chain, the width of its transition band could have been
relaxed, leading to a shorter filter, however no resource sharing would have been possible. If the

Sample Rate Conversion for an LTE Receiver

filter was last in the chain, it would have required a narrower transition band leading to a longer
filter, however more resource sharing would have been possible.

4 It then follows that the last stage is a decimating FIR filter, which can use resource sharing by a
factor of two.

In this example, the clock rate is 125 MHz and the input sampling rate is 125 Msps, therefore no
resource sharing is implemented in the first filter stage. Stages two and three have a minimum of two
cycles per sample available, therefore resource sharing by a factor of two is implemented in parts of
the Farrow Rate Converter, and in the final FIR decimation stage. This approximately halves the
number of multipliers required to implement these stages compared to a fully parallel
implementation.

All of the filter stages have valid input and output signals. These signals are used to represent
different sampling rates throughout the filter chain. It's essential for the Farrow rate converter to
have a valid output signal because it implements a non-integer rate change. However providing a
valid input signal at the first stage means that it is not necessary to pass new data into the sample
rate converter on every cycle. This is relevant in scenarios where the hardware clock rate is greater
than the input sampling rate.

Top Level Parameters

Configure the top level parameters of the sample rate converter. FSADC is the input rate, while
FsLTERX is the output rate; that is, the input to the LTE receiver. Fpass is the passband cut-off
frequency and is set to 10 MHz to accommodate the maximum possible LTE bandwidth of 20 MHz.
Fstop is set to the Nyquist rate, however can be adjusted if more out-of-band signal rejection is
required. Ast is the stopband attenuation in dBs, and Ap is the desired amount of passband ripple.

FsADC = 125e6;
FSLTERx = 30.72€6;
Fpass = 10e6;
Fstop = FsLTERx/2;
Ast = 60;

Ap = 0.1;

Farrow Rate Converter

The Farrow rate converter consists of (i) a fractional delay filter implemented using a Farrow
structure and (ii) control logic to determine when to generate output samples, and with which
sampling phase. In this example, the Farrow fractional delay filter approximates the impulse response
of a custom prototype filter using a set of 3rd order polynomials. The prototype filter is designed
taking the signal bandwidth and output sampling rate into account, allowing the filter length to be
minimized while avoiding aliasing within the signal of interest. The Farrow filter structure is the same
as that used in the dsp.VariableIntegerDelay (DSP System Toolbox) and
dsp.FarrowRateConverter (DSP System Toolbox) System objects. Note that the System objects
were not used here as they don't support HDL code generation from Simulink.

Define the key parameters of the Farrow rate converter. numTaps is the number of taps in each fixed-
coefficient FIR of the farrow structure. It is also the number of polynomials used in the
approximation. FsIn and FsOut are the input and output rates respectively. Fsig is the bandwidth of
the signal of interest. The filter is designed to avoid aliasing within this region. sps is the number of
samples per section (also known as the oversampling factor) used while designing the prototype filter.

farrow.numTaps = 6;
farrow.FsIn = FsADC/2;
farrow.FsOut = 2*FsLTERX;

4-3

4 reatured Examples

4-4

farrow.Fsig
farrow.sps

= Fpass;

= 16;

Design the prototype filter, and approximate it with a set of polynomials. A helper class called
FarrowDesignUtils contains a set of methods which are used to design and analyze the fractional
delay filter. These methods will not be discussed in detail. Refer to the source code for more
information.

farrow.prototype
farrow.polynomials

= FarrowDesignUtils.designFilterPrototype(farrow);

= FarrowDesignUtils.generatePolynomialCoefficients(farrow);
Evaluate the impulse response of the approximation, and compare it to the prototype filter. For
visualization purposes, the reconstruction is performed with 100 samples per section in contrast to
the prototype filter, which only contains 16 samples per section.

[protoInterp,ta] = FarrowDesignUtils.evaluateApproximation(farrow.polynomials,100);

srcPlots.FarrowIR = figure;

tp = ((0:length(farrow.prototype)-1) - floor(length(farrow.prototype)/2))/farrow.sps;
stem(tp, farrow.prototype,'."'); hold on;

plot(ta,protoInterp);

SRCTestUtils.setPlotNameAndTitle('Farrow Impulse Response');
ylabel('p[k]");

xlabel('Discrete time index, k');

legend('Prototype filter', 'Piece-wise polynomial approximation');

Farrow Impulse Response

1.2 T T T T
— Prototype filter
Piece-wise polynomial approximation
1r I 7
0.8 r i \ 7
0.6 | : ' 1
E |
[|
0.4 r f \ 7
|
021 - \ 1
-ﬂ I“
—D_ 2 1 1 1 1 1

Discrete time index, k

Sample Rate Conversion for an LTE Receiver

Compare the approximation to the prototype filter in the frequency domain. The reconstruction is
performed with 16 samples per section to match the sampling rate of the prototype filter and
facilitate the comparison. The plot also highlights the spectral components which will alias on top of
the signal of interest once it has been converted to the output rate. This shows that no significant
aliasing will occur.

protoApprox = FarrowDesignUtils.evaluateApproximation(farrow.polynomials,farrow.sps);

srcPlots.FarrowFreq = figure; clf;

Fsover = farrow.sps * farrow.FsIn;
Nfft = 2048;
f = Fsover*(-Nfft/2:Nfft/2-1)/Nfft;

plot(f/1le6,20*loglO(abs(fftshift(fft(farrow.prototype/farrow.sps,Nfft)
plot(f/1le6,20*loglO(abs(fftshift(fft(protoApprox/farrow.sps,Nfft)))),"'
ax = axis;

axis([ax(1l) ax(2) -80 30]1);
FarrowDesignUtils.plotSignalImages(farrow.FsOut);

)),'g"); hold on;
");

)
b

SRCTestUtils.setPlotNameAndTitle('Farrow Frequency Response');
xlabel('Frequency [MHz]');

ylabel('Magnitude [dB]');

legend('Prototype filter', 'Approximation', 'Spectral images at FsOut');

Farrow Frequency Response
:‘I-D T T T T T T T T T

Prototype filter
Approximation

Spectral images at FsOut

Magnitude [dBE]
(AR RN
= = =

L
o

-500 400 -300 -200 -100 O 100
Frequency [MHz]

4 reatured Examples

4-6

Decimating FIR Filters

Design the first and last FIR filter stages. Both filters use 16-bit coefficients

coefficients data type is defined.

FIRCoeffsDT = numerictype(1l,16,15);
Halfband Decimator

Design a halfband filter to efficiently decimate the input by 2.

hbParams.FsIn = FsADC;

hbParams.FsQut = FsADC/2;
hbParams.TransitionWidth = hbParams.FsOut - 2*Fpass;
hbParams.StopbandAttenuation = Ast + 10;

hbSpec = fdesign.decimator(2, 'halfband', ...
"Tw,Ast’', ...
hbParams.TransitionWidth,
hbParams.StopbandAttenuation,...
hbParams.FsIn);

halfband = design(hbSpec, 'SystemObject', true);

halfband.FullPrecisionOverride false;

halfband.CoefficientsDataType "Custom';

halfband.CustomCoefficientsDataType = numerictype([],...
FIRCoeffsDT.WordLength, FIRCoeffsDT.FractionLength);

Plot the frequency response of the filter, including the quantized response.

srcPlots.halfband = fvtool(halfband, 'arithmetic', 'fixed');
SRCTestUtils.setPlotNameAndTitle('Halfband FIR'");

. For convenience, the

legend('Quantized filter', 'Reference filter', 'Design constraints');

Sample Rate Conversion for an LTE Receiver

Halfband FIR

0 ——'—Tq_::———————————l E
l T
R
10 ' - | §
| ~ |
- |
20T Quantized filter | 7
————— Reference filter |
—_ a3l — — —Design constraints |]
[ui]
= [|
w 407 I I T
-
= ' |
= -850 [| i
o | |
= 60 | | .
| |

70 b L] JY————
-80 . 7

0 10 20 30 40 50 60
Frequency (MHz)

Final FIR Decimator

Design the final decimate-by-2 FIR filtering stage.

finalSpec = fdesign.decimator(2, 'lowpass',...
"Fp,Fst,Ap,Ast',Fpass,Fstop,Ap,Ast, farrow.FsOut);

finalFilt = design(finalSpec, 'equiripple', 'SystemObject', true);

finalFilt.FullPrecisionOverride false;

finalFilt.CoefficientsDataType 'Custom';

finalFilt.CustomCoefficientsDataType = numerictype(I[],...
FIRCoeffsDT.WordLength, FIRCoeffsDT.FractionLength);

Plot the frequency response of the filter, including the quantized response.

srcPlots.finalFilt = fvtool(finalFilt, 'arithmetic', 'fixed"');
SRCTestUtils.setPlotNameAndTitle('Final Decimating FIR');
legend('Quantized filter', 'Reference filter', 'Design constraints');

4 reatured Examples

Final Decimating FIR

0 —r 7
' |
' |
107 | \ | T
: Voo Cuantized filter
20 F i \'hl === Reference filter -
— | — — —Design constraints
[ud] | L
=30t ' | -
° | ||
2 ' |
o 40T I | 7
o | |
50 [| .
o
I
60 e Py s S ey R
F I(‘ {'\
7o]
| |]J t |1J
0 5 10 15

Frequency {MHZ]
Simulink HDL Implementation

Open the model and update the diagram. The top level of the model is shown. HDL code can be
generated for the Sample Rate Converter subsystem.

stopTime = 0;

dataln = 0;

validIn = false;

modelName = 'SampleRateConversionHDL';

open_system(modelName) ;
set param(modelName, 'SimulationCommand', 'Update');
set param(modelName, 'Open','on');

| Sample Rate Conversion for an LTE Receiver)

Signal From
Warkspace

idoaibla sfix12_EnT1 sfix16_En15
dataln convert = dataln dataOut = > out.dataOut
dataln dataOut

boclean boclean
validin ¥ validin validOut > out.validOut
dataCut validOut

Signal From
Warkspace1
Sample Rate Converter

4-8

Sample Rate Conversion for an LTE Receiver

sfix12_Eni1

dataln

a boolean

wvalidin

As discussed, the sample rate converter contains a halfband filter, a Farrow rate converter and a final
FIR decimation stage.

set param([modelName '/Sample Rate Converter'],'Open',‘'on');

sfix16_En14 sfix18_En14 sfix16_En13
— — dataOut —

dataOut datalut

dataln
datalut

(]
(]
(I]

boolean boolean boolean

validOut | validin validOut

validOut

walidOut

hd

Halftxand Fifter Farrow Rate Converter FIR Decimator

The halfband FIR is implemented using the Discrete FIR Filter HDL Optimized block, and a MATLAB
function block to implement decimation by 2. The FIR block uses a transposed filter structure, which
optimizes for symmetry and zero coefficients.

set _param([modelName '/Sample Rate Converter/Halfband Filter'],'Open',‘'on');

sfix12_En11 sfix1G_En14 sfix1G_Eni4 sfix16_En14
-_—F data data — dataln dataCOut _—h._—b-
datall dataCut
= Discrete FIR Filtar A
HDL Optimized P2
Latency = & Decimate
boolean boolean . . boolean boolean
& — | waid valid validn validOut 2
validin validOut
Discrete FIR Filter Decimator
HOL Optimized

The Farrow rate converter comprises a Filter Bank of fixed-coefficient FIRs, a Sample Controller
for generating the output timing, and a Sum Product Chain to compute the final output samples.
The Sample Controller uses a validOut signal to tell the Sum Product Chain when to generate a
new output sample. It also passes the new sampling phase as a fraction, rho, where 0 <= rho < 1.

set param([modelName '/Sample Rate Converter/Farrow Rate Converter'],'Open','on');

sfictd Entd 1 Jefcto Entg
G r——* 7 dataln
datain

six18_En'4 (4)

o
z
fbosiean

®: an

vaidin

oy
[

Filter Bank

six18_En'4 (4)

ufic1_Ents

¥

oc18_Ent4 ofix16_Eni4 1 e Enid
F————#{ convert z dataln data

fsfoc16_Eni4 Isfoc 16_En 14

dataOut

Sample Cor

troller

'Sum Product Chain

[e
[

Zero Invalid Samples.

Bkm can s

validOut

The Filter Bank subsystem is implemented with four Discrete FIR Filter HDL Optimized blocks.
Each block is configured to share resources according to the Min cycles between valid input
samples parameter of the Farrow Fate Converter subsystem, which is set to 2 in this case. The
latency of the FIRs may differ from one another due to symmetry and zero coefficient optimization,
therefore each filter also has an associated latency matcher (delay) block to compensate for any
differences. The additional delay needed to compensate for the latency of each filter is calculated by

4-9

4 reatured Examples

the getSubFilterMatchinglLatencies function. getSubFilterMatchinglLatencies is called
during model initialization and assigned to a variable called matchLatencies. To see this, edit the
Farrow Rate Converter subsystem mask and go to the Initialization tab. In this example, all of the
filters have equal latency, therefore all of the latency matcher have a delay of zero. If the Farrow
coefficients are changed via the block mask, the FIR latencies may change and the latency
matcher blocks will automatically compensate for any differences. Finally all four filter outputs are
passed out in a vector.

set param([modelName '/Sample Rate Converter/Farrow Rate Converter/Filter Bank'], 'Open',‘'on');

sfix1d_Eni4 o
sfix1G_Eni4 data U - -
{ 7 } = W data #0 sfix1d_Enid
datan Discrete FIR Filter boolean
HODL Optimized valid - (1L
@ hoolean | Latency = 12 valid1
2 | yalid boolean latency matcher 1 —
validin ready [———]
subfilter 1
B
>
sfix1d_Enid o
data U - -
»| data 20 sfixld_Enid
Dizcrete FIR Filter boolean
HDL Opfimized valid — 1
N Latency = 12 R -
| valid boolean latency matcher 2 "
ready F———] !
subfilter 2 sfi18_Enid (4)
t18_Eni1d (4) :L@
dataCiut 4
datalut
L=
sfix1d Enid o
ot data 1Y |sexa Ente
Dizcrete FIR Filter boolean z
HOL Optimized valid — 1L
_ Latency = 12 vanas
| yalid boolean latency matcher 3
ready f——m !
.
subfilter 3 v
dataCutd
B
o dats data =fix13_En14 e 0 sfin1d_En14
Dizcrete FIR Filter boolean
HOL Optimized valid — il
_ Latency = 12 validh
| valid boolean latency matcher 4
ready F——#»—] g
subfilter 4
LA A A
boolean
B
- 2
validOut D
S walidCut

The Sum Product Chain combines the four FIR outputs with rho to generate output samples
according to the Farrow structure.

set param([modelName '/Sample Rate Converter/Farrow Rate Converter/Sum Product Chain'], 'Open', 'oi

4-10

Sample Rate Conversion for an LTE Receiver

sfix18_En1d [4)

dataln

uix16_Ent6

1 Jinta Ente 1 |inta Ente
>z >z

1 |1 Ents 1 |1 Ents
> »

4
sin1a_En1 1 |t ente
-
i =i18_En1{ - Jefix18_Enta
shx1a Enid
—b. <fix1d_En1d 513 [Entd
’—‘ | Z-

(D,

tho

@ boolean

o] 1 o Ente Ny

q |bodlean 1 |podlean 1 |poolean
a > Z » 2

|1-|'|d"

*(2)

waldOut

Validation and Verification

An LTE test signal is generated at 125 Msps and passed through the rate converter. An Error Vector
Magnitude (EVM) measurement is then performed, confirming that the resampler is suitable for use
in an LTE receiver. For reference, three different methods are used to resample the signal to 30.72
Msps and their EVM results compared. The three methods are:

1 The MATLAB resample function.
2 A MATLAB model of the rate converter.
3 The Simulink HDL model of the rate converter.

In addition, to confirm correct operation of the HDL implementation, the root-mean-square error
between the outputs of the MATLAB and Simulink rate converter models is computed.

Generate a 20 MHz LTE test signal sampled at 125 Msps.

rng(0);
enb
enb.TotSubframes 2;

[tx, ~, sigInfo] 1teRMCDLTool(enb, randi([0 1],1000,1));
dataIn = resample(tx,FsADC,sigInfo.SamplingRate);

dataln 0.95 * dataIn / max(abs(dataIn));

validIn true(size(dataln));

1teRMCDL('R.9");

Use the resample function to resample the received signal from the ADC rate to 30.72 Msps. This
provides a good quality reference to compare to the rate converter.

resampleQut = resample(dataln,FsLTERx,FsADC);

Pass the signal through a MATLAB model of the rate converter.

halfbandOut = halfband(dataln);

farrowOut = FarrowDesignUtils.convertSampleRate(farrow,halfbandOut);
farrowOut = farrowOut(1l:length(farrowOut)-mod(length(farrowOut),2));
floatResamplerQut = finalFilt(farrowOut);

Pass the signal through the fixed-point Simulink HDL implementation model.

stopTime = (length(dataIn)+1000)/FsADC;

simOut = sim(modelName) ;

fiResamplerQut = simOut.dataOut(simOut.validOut);
fiResamplerQut = fiResamplerQOut(1l:length(floatResamplerQOut));

4-11

4 reatured Examples

Plot validIn and validOut to show the overall rate change of the sample rate converter. validIn
is always HIGH, whereas validQut is HIGH about a quarter (0.24576%) of the time.

srcPlots.validSignals = figure;

Ns = 300;

validInSlice = validIn(1l:Ns);
validOutSlice = simOut.validOut(1:Ns);
subplot(2,1,1);
plot((0:Ns-1)/FsADC,validInSlice);
axis ([0 (Ns-1)/FsADC -0.1 1.2]);
ylabel('validIn');

xlabel('time');

subplot(2,1,2);
plot((0:Ns-1)/FsADC,validOutSlice);
axis ([0 (Ns-1)/FsADC -0.1 1.2]);
ylabel('validOut');

xlabel('time');

1
U_ | | | | -
0 0.5 1 1.5 2
time x 107
ik
3
=051
0 _LJJ_lL.J__l.J__LJ_hLJ_hLJ_h,J__LJ_MLJJ_lLJJ__LQJ__LJJ
0 0.5 1 1.5 2

time w1078

Compute the root mean square error between the outputs of the MATLAB and Simulink models of the
rate converter

e = floatResamplerOut-fiResamplerQOut;
rootMeanSquareError = sqrt((e' * e)/length(e));
disp(['Root-mean-square error: ' num2str(rootMeanSquareError)]);

Root-mean-square error: 9.4529e-05

Measure the EVM of all three resampling methods.

4-12

Sample Rate Conversion for an LTE Receiver

SRCTestUtils.MeasureEVM(sigInfo, resampleQut, FSLTERX) ;
SRCTestUtils.MeasureEVM(sigInfo, floatResamplerQOut, FsLTEI
SRCTestUtils.MeasureEVM(sigInfo, fiResamplerOut, FSLTERX)

results.resampleEVM
results.floatPointSRCEVM
[results.fixedPointSRCEVM, fiEqSymbols]

disp('LTE Error Vector Magnitude (EVM) Measurements');

disp(["' resample function RMS EVM: ' num2str(results.resampleEVM.RMS*100,3) ' %']);
disp(["' resample function Peak EVM: ' num2str(results.resampleEVM.Peak*100,3) ' %']);
disp(["' floating point SRC RMS EVM: ' num2str(results.floatPointSRCEVM.RMS*100,3) ' %']);
disp([' floating point SRC Peak EVM: ' num2str(results.floatPointSRCEVM.Peak*100,3) ' %']);
disp(["' fixed point HDL SRC RMS EVM: ' num2str(results.fixedPointSRCEVM.RMS*100,3) ' %']);
disp([' fixed point HDL SRC Peak EVM: ' num2str(results.fixedPointSRCEVM.Peak*100,3) ' %']);

LTE Error Vector Magnitude (EVM) Measurements

resample function RMS EVM: 0.0138 %
resample function Peak EVM: 0.0248 %
floating point SRC RMS EVM: 0.0403 %
floating point SRC Peak EVM: 0.11 %
fixed point HDL SRC RMS EVM: 0.0486 %
fixed point HDL SRC Peak EVM: 0.144 %

Confirm that the signal quality is high by plotting the equalized pilot symbols from the EVM
measurement of the HDL implementation. Note that almost no blurring of the constellation points is
visible.

srcPlots.scatterPlot = scatterplot(fiEqSymbols);
SRCTestUtils.setPlotNameAndTitle('Equalized Cell RS');

Equalized Cell RS

b
-
=
[4%]
=
4]
=
=)

n-Phase

4-13

4 reatured Examples

HDL Code Generation and FPGA Implementation

To generate the HDL code for this example you must have an HDL Coder™ license. Use the makehdl
and makehdltb commands to generate HDL code and an HDL testbench for the Sample Rate
Converter subsystem. The resulting HDL code was synthesized on a Xilinx® Zynq®-7000 ZC706
evaluation board. The post place and route resource utilization results are shown in the table. The
design met timing with a clock frequency of 200 MHz.

disp(table(...
categorical({'LUT"'; 'LUTRAM'; 'FF'; 'BRAM'; 'DSP'}),...
categorical({'1553"'; '46'; '5629'; '0'; '60'}),...
'VariableNames', {'Resource', 'Usage'}));

Resource Usage
LUT 1553
LUTRAM 46
FF 5629
BRAM 0
DSP 60

4-14

HDL Code Generation for Filtered OFDM (F-OFDM) Transmitter

HDL Code Generation for Filtered OFDM (F-OFDM) Transmitter

Filtered OFDM (F-OFDM) applies a filter to the symbols after the IFFT in the transmitter to improve
bandwidth while maintaining the orthogonality of the complex symbols. This example implements a
transmitter F-OFDM for HDL code generation. The example shows how to go from a MATLAB®
reference model to an HDL-optimized Simulink® model. It includes converting from double to fixed-
point types, and minimizing the resource use of the design on an FPGA.

Refer to “F-OFDM vs. OFDM Modulation” for comparison between OFDM and F-OFDM waveforms.
System Parameters

Set the desired F-OFDM properties.

NDLRB = 108;
WaveformType = 'F-OFDM';
SubcarrierSpacing = 60*1e3; %Hz
CellRefP =1;
CyclicPrefix = 'Normal';
FilterLength = 513;
ToneOffset = 2.5000;
CyclicExtension = 'off';

Call the h5g0FDMInfo function to calculate F-OFDM parameters. The method calculates FFT length,
cyclic prefix lengths and number of subcarriers.

genb = struct('NDLRB', NDLRB,...
'"WaveformType', WaveformType,....
'SubcarrierSpacing', SubcarrierSpacing*le-3,...
'FilterLength', FilterLength,...
'ToneOffset', ToneOffset, ...
'CellRefP', CellRefP,...
'CyclicPrefix', CyclicPrefix,...
"CyclicExtension', CyclicExtension);

info = h5g0FDMInfo(genb);

Generate a Grid of Input Data

QAMModulation '64QAM " ;
TotSubframes 5;
[txgrid, bitsIn] generate0OFDMGrid(genb,info,QAMModulation, TotSubframes);

Reference MATLAB Model

The reference model runs a floating-point F-OFDM system and plots the spectrum. Use the reference
model to compare against the fixed-point model that supports HDL code generation.

[txSig ref,txinfo] = h5g0FDMModulate(genb, txgrid);
Model the channel by adding noise to the signal.

snrdB = 18;
S = RandStream('mt19937ar', 'Seed',1);
rxSig ref = awgn(double(txSig ref),snrdB, 'measured',S);

The received signal must be synchronized and aligned. In real situations, the receiver includes

symbol synchronization. In this example, the receiver corrects for the shift of the frame by the
FilierLength

transmitter filter by z

4-15

4 reatured Exa mples

rxSig ref sync = circshift(rxSig ref,-floor(FilterLength/2));

Recover data, calculate BER, and display constellation.

[constDiagRx, ber, rxgrid ref] = FOFDM Receiver(rxSig ref sync, bitsIn, genb,...
QAMModulation, 'F-OFDM Reception (REF)');

disp(['F-OFDM Reception (REF)', ' BER = ' num2str(ber(l)) ' at SNR = ' num2str(snrdB) ' dB']);

constDiagRx(rxgrid ref(:));

F-OFDM Reception (REF) BER = 0.0094568 at SNR = 18 dB

(] = (=] 4]
File Tools VWiew Help o
@-a a- k- 8k

*¥ EVM / MER

F-OFDM Demodulated Symbols R
— ¥ Settings

Feference constellation:

Custom value: [-1 0801234497 3464 +1 .

¥ EVM / MER (Channel 1)

Cuadrature An
+ ++ + + + + +
+ + + + + + + +
'+ + + + + + + +

+
n
-+
+
+
n
+
+

+ + 4+ + + + + +
+ + 4+ + + + + o+
+ + 4+ + + + + +
+ + 4+ + + + + +

Rz B

n-phase Amplitude

Processing Frame=1

The spectrum shows clear improvement of out-of-band radiation of the subband signal, and increase
in effective bandwidth.

FOFDMTransmitterHDLSpectrum(txSig ref,txinfo,genb, 'F-OFDM Spectrum (REF)');

4-16

HDL Code Generation for Filtered OFDM (F-OFDM) Transmitter

108 RBs. Subcarrier spacing: 60kHz.
Sample rate: 122,88 Msps

F-OFDM Spectrum (REF)

100 | ‘

L
o

E 20
=]

= 140 F | \h
g a'
o

=200

=220 1 € >
BW: 77.8 MHz

240 : : '
40 30 20 10 0 10 20 30 40

Frequency (MHz)

Simulink Fixed-point Model

model = 'FOFDMTransmitterHDLExample FixPt';
load system(model);
open_system([model, '/F-OFDM']);

data data » ¥ data data 1)
din dout
IFFT Discrete FIR Filter
HOL Optimized CP Insertion HOL Optimized
Latency = — Latency = —
L2 J P valid valid » P valid wvalid 2)
dir_wid dout_wid

CF Inzertion

pluidin ok readReq il

readylogic dataReq

Ready Logic

To generate HDL from the model, fixed-point data type must be used instead of double. For 64-point
QAM, at least 6 bits + 1 sign bit is needed. However, to achieve reasonable BER, the input word
length must be increased, considering the FPGA's limitation. Multipliers in FPGAs have limited input
word length. For example, Xilinx's DSP48 has 18*25-bit multiplier. For an optimal design, a
wordlength is chosen so that all multipliers in the FFT and the filter are smaller than 18*25-bit

4-17

4 reatured Examples

4-18

multipliers. In this example, the FFT HDL Optimized block uses the "Divide butterfly outputs by two"
option. The input word length is 16 bits.

You can run the Simulink model with floating point data by setting WORDLENGTH=-1. However, this
mode is not supported for HDL code generation.

WORDLENGTH = 16;

Set the number of fractional bits to WORDLENGTH - 2 bits to cover -1 <= Symbol <= 1.
FRACTIONLENGTH = WORDLENGTH - 2;

Generating OFDM Symbols

The input data to the IFFT is assumed to be a proper OFDM symbol and resides in a memory (OFDM
Symbol subsystem in the model) that can be read by F-OFDM Subsystem. Therefore, the transmitter's
sample rate depends on the data availability in the memory and FPGA clock frequency. If the data is
available all the time, then the sample rate is limited to

FFT Length
[FFT L r|_||-.'|'- - Max | CyelicHre __|". L riipl Fi)) X

clock_frequency =

On the other hand, the required sample rate is calculated by SubcarrierSpacing = FFT Length and
it is equal to 122.88 Msps for this example. To achieve 122.88 Msps the clock frequency should be at
least 135.36 MHz.

ifftin = generateOFDMSymbol(txgrid,info,genb);
Filter Design

The appropriate filter should have a flat passband over the subcarriers and sharp transition to
minimize guard bands. It also needs sufficient stopband attenuation. A prototype filter w' = wry * w2 is
used, where 11 is a SINC function and

e = 0.5 % (1 4+ cos(},‘_I })

fnum = generateFilterCoef(genb,info);

Simulation

Set up the model and run. Note that due to the system latency, the model needs to be simulated
longer to collect enough data.

Nfft = info.Nfft;
CyclicPrefixLengths = info.CyclicPrefixLengths;
SymbolsPerSubframe = info.SymbolsPerSubframe;

STOPTIME = 4 * TotSubframes * info.SamplesPerSubframe;

sim(model);
txSig fixpt = TX WAVEFORM(1l: size(txSig ref));

Model the channel by adding some noise to the signal. Note that the same noise is used as in the
reference MATLAB model.

S = RandStream('mt19937ar', 'Seed',1);
rxSig fixpt = awgn(double(txSig fixpt),snrdB, ‘measured',S);

HDL Code Generation for Filtered OFDM (F-OFDM) Transmitter

Perform symbol synchronization, recover data, calculate BER, and display constellation.
rxSig fixpt sync = circshift(rxSig fixpt, -floor(genb.FilterLength/2));

[constDiagRx,ber,rxgrid fixpt] = FOFDM Receiver(rxSig fixpt sync,bitsIn,

genb, QAMModulation, 'F-OFDM Reception (FIXED-POINT)');
disp(['F-OFDM Reception (FIXED-POINT)',' BER = ' num2str(ber(l)) ' at SNR = ' num2str(snrdB) ' dl
constDiagRx(rxgrid fixpt(:));

F-OFDM Reception (FIXED-POINT) BER = 0.0094453 at SNR = 18 dB

'.[-. = =] &3
File Tools View Help o
©@-a a- &8k
*¥ EVM / MER
F-O0FDM Demodulated Symbols .

NIl = L= - 1.0501234497 3464 41,

¥ EVM S MER (Channel 1)

CQuadratur

n
n

n

< +
'+

+

n

n

+ + 4+ + + + + +
+ + 4+ + + + + +
+ + 4+ + + + + +
+ + 4+ + + + + +
+ + 4+ + + + + +
+ + + + + + + +
'+ + + + + + + o+

RMS EV

n-phase Amplitude

Proceszing Frame=1

The spectrum shows even for fixed point a clear improvement of out-of-band radiation of the subband
signal, and increase in effective bandwidth.

FOFDMTransmitterHDLSpectrum(txSig fixpt, txinfo,genb, 'F-OFDM Spectrum (FIXED-POINT)"');

4-19

4 reatured Examples

4-20

108 RBs. Subcarrier spacing: 60kHz.
Sample rate: 122,88 Msps

F-OFDM Spectrum (FIXED-POINT)

ol MWWWWWWM

-80

100 T ‘

=200

=220 1 € >
BW: 77.8 MHz

240 : : '
40 30 20 10 0 10 20 30 40

Frequency (MHz)
Simulink HDL Optimized Model

The fixed point model uses a 513-tap filter in the time domain. This filter requires 2*513 multipliers
since the output of IFFT is complex. Even when implemented using a symmetric filter it needs 513
multipliers which is too many multipliers for a normal size FPGA. To reduce the number of multipliers
in the filter, the HDL Optimized model filters in the frequency domain. A frequency domain FIR filter
requires FFT of the input multiplied by FFT of the coefficients and then IFFT the result. The number
of complex multipliers in this case is

. o FET Le
T 4 ‘-!.3“‘ g2 F f'_.l'..l' ngth)

)-1

The frequency domain filter in this example uses 11 complex multipliers. Note that the actual number
of real multipliers depends on FFT and IFFT block setting (Complex multiplication option) and word
length. In the HDL Optimized model, the time domain FIR filter is replaced by a frequency domain
FIR filter implemented with an overlap-save architecture. Due to overlapping characteristic of the
overlap-save architecture, the sample-rate is limited to

FFT Length

‘I!‘NIA-_IIPEIU UCnCcy * (FFT La r|.l,-.'|'| = Mazil ';',.rf.-.- Pre .ll'.l.r Lo .-.':';.fnll: 2w FilterLe .'r:'.r-'.".I 1 1,

Therefore, to achieve 122.88 Msps sample-rate for this example, the clock frequency must be at least
196.8 MHz.

model = 'FOFDMTransmitterHDLExample HDLOpt';
load system(model);
open_system([model, '/F-OFDM']);

HDL Code Generation for Filtered OFDM (F-OFDM) Transmitter

dout »_ 1)
—b- data data i din dout | din dout
din
IFFT Fih
HDL Optimized CP Insertion Overlap Save S 2)

Latency = —

din_vid

] valid valid P din_vid diout_vid P din_vid

rdy

Overlap Save
FIR Filter

CF Insertion

rdyln

b e =
| vidin readLogic dataReq

Set the length of the FFT for the filter. The length must be at least 2*FilterLength for frequency
domain filtering. However, because it must process the whole OFDM symbol at once use Nfft for FFT
length inside the filter. Then, calculate the FFT of the coefficients. Bit-reverse the result since the
output of the FFT for the filter is bit-reversed.

filterFFTLen = Nfft;
fftFnum = bitrevorder(fft(fnum,filterFFTLen)."');

For fixed-point input data, the output of the FFT inside the filter has a bit-growth = log2(Nfft) = 11
bits. To map most of the multipliers into DSP block in FPGA, limit the input word length. For example
if DSP has a 25*18-bit multiplier, the WORDLENGTH must be 14 bits to achieve 25-bits output of the
FFT inside the filter. Also, use 18-bit coefficients.

WORDLENGTH = 14;
FRACTIONLENGTH = WORDLENGTH - 2;
if WORDLENGTH > 0 %for fixed point data

COEF WL = 18;
COEF_FR = COEF WL - 2;
fftFnum = fi(fftFnum, 1, COEF WL, COEF_FR, 'RoundingMethod', 'Nearest',...

'OverflowAction', 'Wrap');
end
STOPTIME = 4 * TotSubframes * info.SamplesPerSubframe;

sim(model);

txSig HDLOpt = TX WAVEFORM HDLOpt(1l: size(txSig ref));

Model the channel by adding some noise to the signal. Note that the same noise is used as in the
reference MATLAB model.

S = RandStream('mt19937ar', 'Seed',1);

rxSig HDLOpt = awgn(double(txSig HDLOpt), snrdB, 'measured', S);

Perform symbol synchronization, recover data, calculate BER, and display constellation.
rxSig HDLOpt sync = circshift(rxSig HDLOpt, -floor(genb.FilterLength/2));
[constDiagRx,ber, rxgrid HDLOpt] = FOFDM Receiver(rxSig HDLOpt sync,bitsIn,...

genb, QAMModulation, 'F-OFDM Reception (HDLOPT)');
disp(['F-OFDM Reception (HDLOPT)',' BER = ' num2str(ber(1l)) ' at SNR = ' num2str(snrdB)
constDiagRx(rxgrid HDLOpt(:));

F-OFDM Reception (HDLOPT) BER = 0.010038 at SNR = 18 dB

4-21

tdB']);

4 reatured Exa mples

(| = =] 3
File Tools VWiew Help N
o-a a- @ alk

*¥ EVM f MER
F-OFDM Demodulated Symbaols
surerment interval;
EM normalization:
Reference constellation:

Cystom value: [-1 0801234497 3464 41

¥ B S MER (Channel 1)

Cuadrature A

+ + 4+ + + + + +
A
+ + 4+ + + + + +
+ + + + + + + +]

+
+
+
+
+
+
+
+

+ + 4+ + + 4
+ + 4+ + + + + +

n-phase Amplitude

Processing Frame=1

The spectrum shows even for fixed point a clear improvement of out-of-band radiation of the subband
signal, and increase in effective bandwidth.

FOFDMTransmitterHDLSpectrum(txSig HDLOpt,txinfo,genb, 'F-OFDM Spectrum (HDLOPT)');

4-22

HDL Code Generation for Filtered OFDM (F-OFDM) Transmitter

108 RBs. Subcarrier spacing: 60kHz.
Sample rate: 122,88 Msps

F-OFDM Spectrum (HDLOPT)
=40 r

o ey

— -100 ‘

-120

-140

Fower (dBm

-160
-180

200 | < >
BW: 77 .8 MHz

<40 30 -20 -10 0 10 20 30 40
Frequency (MHz)

-220

Generate HDL Code and Test Bench

Use a temporary directory for the generated files:

'"FOFDMTransmitterHDLExample HDLOpt/F-OFDM';
tempname;

systemname
workingdir

You can run the following command to check the F-OFDM subsystem for HDL code generation
compatibility:

checkhdl(systemname, 'TargetDirectory',workingdir);
Run the following command to generate HDL code:

makehdl(systemname, 'TargetDirectory',workingdir);
Run the following command to generate the test bench:

makehdltb(systemname, 'TargetDirectory',workingdir);
Synthesis Result

The design was synthesized for Xilinx Zyng-7000 (xc7z045-ffg900, speed grade 2) using Vivado. This
FPGA has 900 DSP48 slices and therefore, the fixed-point version of the design doesn't fit in this
device. The HDL Optimized version of the design fits in this chip and achieves a clock frequency of
205.8 MHz which meets the required clock frequency of 196.8 MHz. The design uses 94 DSP48 (10%)
and 24 block RAMs (4%).

4-23

4 reatured Examples

Conclusion

In this example a Simulink fixed-point model was developed and optimized for hardware. The model
minimized resource usage by optimizing use of DSP on the FPGA. Comparing the results of the
floating-point model with the fixed-point model shows that 16-bit data has a similar bit error rate to
the floating-point data.

See Also

Related Examples
. “F-OFDM vs. OFDM Modulation”

4-24

HDL Implementation of a Variable-Size FFT

HDL Implementation of a Variable-Size FFT

This example shows how to implement a variable-size FFT using a single FFT core.

This example includes two models VariableSizeFFTHDLExample and
VariableSizeFFTArbitraryValidPatternHDLExample that show variable-size FFT implementations for
different input valid patterns.

Many popular standards like WLAN, WiMax, digital video broadcast (DVB), digital audio broadcast
(DAB), and long term evolution (LTE) provide multiple bandwidth options. The required FFT length
for OFDM modulation and demodulation for these standards varies with bandwidth option. For
example, LTE supports different channel bandwidth options from 1.4 MHz to 20 MHz, which require
FFT lengths of 128 to 2048 respectively. The FFT HDL Optimized (DSP System Toolbox) block
generates HDL code for a specific FFT length. This example demonstrates how to use the FFT HDL
Optimized block to implement a variable-size FFT.

This example generates input data in MATLAB® and imports it to Simulink® for the simulation. The
imported data is fed to the implementations of variable-size FFT using a single FFT and multiple
FFTs. To demonstrate that the single-FFT implementation matches the results of using multiple FFTs
of various sizes, both the output streams from the Simulink simulation are exported to MATLAB and
compared.

Model Architecture

The top-level subsystem in both the models implement a variable-sized FFT. The top subsystem uses a
single FFT block and the bottom subsystem provides reference data by using multiple FFT blocks of
various sizes.

The model VariableSizeFFTHDLExample can process data with a gap between valid samples,
provided the gap depends on FFT length.

modelname = 'VariableSizeFFTHDLExample';
open_system(modelname) ;

4-25

4 reatured Examples

dataln »| convert | dataln
walidOut
validin ¥| validin
r
n
dataCut1 | dataCiut
fiiLenin | FFTLen
‘ariable Size FFT using Single FFT
§»| dataln
validOut2
| validin
r
n
dataOutZ P dataDut?
| FFTLen

Muttiple FFTs for Referancea

Configuration of FFT Lengths

The FFT lengths are specified through a variable fftLenVecMulFFTs. The largest of these lengths is
stored in a variable fftLenSinFFT and used as the FFT length for the FFT block in the 'Variable
Size FFT using Single FFT' subsystem.

The input fftLenIn is generated by using the vector of FFT lengths specified in
fftLenVecMulFFTs.

fftLenVecMulFFTs = [128;256;512;1024;2048];

% Single FFT length used by variable size FFT.

fftLenSinFFT = max(fftLenVecMulFFTs);

% Generate |fftLenIn| by repeating each element of |fftLenVecMulFFTs| by
% |fftLenSinFFT| times and arranging in a single column.

fflen =repmat(fftLenVecMulFFTs.', fftLenSinFFT,1);

fftLenIn = uintl6(fflen(:));

Input Generation

dataln, validIn, and fftLenIn inputs are generated in MATLAB and imported to the Simulink
model. Random complex input data randInputData is generated for each of the FFT lengths
specified in fftLenVecMulFFTs. Different FFT lengths correspond to different bandwidths and
different sampling rates. For instance, in LTE, the FFT lengths of 128, 256, 512, 1024, and 2048
correspond to the sampling rates 1.92 MHz, 3.84 MHz, 7.68 MHz, 15.36 MHz, and 30.72 MHz

respectively. The symbol time for any FFT length is %0-67f5 The example operates at the highest
rate among the FFT lengths specified.

The dataln signal is generated by padding zeros in between the randInputData samples. The
figure below shows the input data and valid patterns for fftLenVecMulFFTs of 256 and 512 and

4-26

HDL Implementation of a Variable-Size FFT

fftLenSinFFT being 2048. For the FFT length of 256, the example inserts 7 invalid samples for
every valid sample and for the FFT length of 512, the code inserts 3 invalid samples for every valid
sample.

The model VariableSizeFFTHDLExample requires the input valid pattern to have a gap between valid
samples as shown in the figure below.

» dataln

validin

»-fitLengthin

rng('default');
dataln = zeros(length(fftLenVecMulFFTs)*fftLenSinFFT,1);
validIn = false(length(fftLenVecMulFFTs)*fftLenSinFFT,1);
% Loop over the FFT lengths
for ind = 1l:length(fftLenVecMulFFTs)
% Generate data of FFT length samples
randInputData = complex(randn(l, fftLenVecMulFFTs(ind)),randn(1l,fftLenVecMulFFTs(ind)));
% Zero padding in between input data samples
upSamplingFac = fftLenSinFFT/fftLenVecMulFFTs(ind);
dataln((ind-1)*fftLenSinFFT+1:fftLenSinFFT*ind) = upsample(randInputData,upSamplingFac);
% Valid corresponding to the generated data
tempValid = true(l,fftLenVecMulFFTs(ind));
validIn((ind-1)*fftLenSinFFT+1:fftLenSinFFT*ind) = upsample(tempValid,upSamplingFac);
end
inputDataType = 'fixdt(1,16,14)'; % Input data type can be modified here
set param('VariableSizeFFTHDLExample/Data Type Conversion', 'OutDataTypeStr', inputDataType);
% Get FFT latency
fftObj = dsp.HDLFFT('FFTLength',fftLenSinFFT, ...
"Architecture', 'Streaming Radix 272',...
'ComplexMultiplication', 'Use 3 multipliers and 5 adders',...
'BitReversedQutput', false,...
'BitReversedInput', false,...
'"Normalize', false);
latency=getLatency(fftObj); % Default latency is 4137 for 2048 point FFT.
additionPipelineDelay = 6; % Number of additional pipeline delays
% Simulink simulation end time Total Latency = Latency of FFT + Latency of
% data controller (5 clock cycles).
% Total simulation running time = Total
% number of input samples + Total Latency + Pipeline delay.
simTime = fftLenSinFFT*(length(fftLenVecMulFFTs) + 1) + latency + additionPipelineDelay ;

Variable-Size FFT using Single FFT

The 'Variable-Size FFT using Single FFT' design includes a Data Controller, an FFT HDL
Optimized block, and a Bin selection subsystem.

open_system([modelname '/Variable Size FFT using Single FFT']);

4-27

4 reatured Examples

data | dataln
dataCut | data
dataln FFT dataliut —I'
dataln HDL Optimized start #| foutstart dataCut1
Latency = —
wvalidCut | valid
walid -{ validin
validin
wvalidin | fitLen
walidhifft d " validCut —D

i : j——————®|FFTlen frameEnd

FFTLen

4-28

validOutl

-l End
!

Bin selection

Data Controller

The Data Controller subsystem controls the input data so that the input to the FFT HDL
Optimized block has data samples with zeros padded in between them. The FFT HDL Optimized block
is configured for an FFT length of 2048, the largest FFT length required by the LTE standard. To
simplify selection of the output bins, the FFT block is configured to output the samples in bit-natural
order. The FFT length is specified through input port and is sampled at the start of the frame. The
requested FFT length must be delayed to match the FFT latency. The FFT length is registered using
the start output signal of the FFT and the generated end of the frame signal. This method avoids
implementing a large delay-matching memory. Since the input data has zeros in between samples, the
output of the large FFT contains repeated copies of the FFT length samples. To get the required FFT
output, the first FFT length samples are collected from the FFT output. This operation is performed
by modifying the output valid signal of the FFT using the Bin selection subsystem.

Multiple FFTs for Reference

This subsystem is used as a reference to compare against the output of Variable Size FFT using
Single FFT. The subsystem includes five different FFT blocks (FFT 128, FFT 256, FFT 512, FFT 1024,
and FFT 2048) and one MATLAB Function block. The input data will be fed to all five FFTs.
Depending on the requested FFT length, one of the five FFT blocks is activated and FFT operation is
performed. The MATLAB function block pickFFTData selects the output from the appropriate FFT
block. The output is saved to MATLAB for comparison with the output of the Variable-Size FFT using
Single FFT.

open_system([modelname '/Multiple FFTs for Reference'l);

HDL Implementation of a Variable-Size FFT

13 | dataln
—— dataQut1Z8 | datalniZd
2 3 | validin
wvalidin X X
3 | FFTLength validOut1Z8 | validin123
FFTLen FFT 128
| dataln
dataOut256 | dataln256 datalut »_ 2)
W validin dataOut2
| FFTLength validOut256 P validin256
FFT 256
| dataln
dataOut512 | dataln512
| validin
| FFTLength validOut512 P validin512
FFT 512 »| datain
dataCuti0z4 | datalnil24
| validin
| FFTLenath valid Out1024 - validin1024 validOut ;@
valid Out2
L s dataln FFT 1024
dataCutZ048 | dataln2048
B validin
| FFTLength validOutZ048 | validin2043
FFT 2048

FickFFTdata

Run Simulink Model

The MATLAB script configures desired vector of FFT lengths, the size of the single FFT, and
generates input data with a valid signal. It then runs the model, and compares the output of the two
subsystems in MATLAB.

Run the model using the sim command on the MATLAB command line.
sim(modelname);
Verification

The output from both subsystems is sent to the MATLAB workspace and the difference is plotted. In
this case, the output of the two subsystems are identical and the error between the two sets of values
is 0.

dataOutl = outl(:);

dataOut2 = out2(:);

figVSF = figure('Visible', 'off');

plot(abs(datalutl-dataOut2));

title('Difference between the two outputs for fixed valid pattern')
xlabel('Sample Index');

ylabel('Error');

figVSF.Visible = 'on';

bdclose(modelname);

4-29

4 reatured Exa mples

Difference between the two outputs for fixed valid pattern
1 T T T T T T T

0.4r1

0.2r

Error
[

—"I 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000

Sample Index

Support for Arbitrary Input Valid Patterns

The above model VariableSizeFFTHDLExample has a requirement of having a minimum gap between
input data samples. The gap depends on the specified FFT length and the largest FFT length handled
by the design. There may be cases where the input data may not conform to this pattern. For
example, the data may be continuous and padded with zeros at the end of the input data samples. The
following figure shows a contiguous input valid pattern with invalid samples padded at the end of
input data samples for FFT lengths of 256 and 512. The single FFT length is set to 2048. In this case,
the 256 valid samples are followed by 1792 invalid samples and the 512 valid samples are followed by
1536 invalid samples.

validin

»fiiLengthin

In such scenario, the design has to store the input samples into a RAM, and pad invalid samples
between valid samples before sending it on to the FFT. The model
VariableSizeFFTArbitraryValidPatternHDLExample can handle any arbitrary pattern of valid input so
long as the gap between frames is at least the single FFT length (2048 samples for LTE). This model
is the same as the model VariableSizeFFTHDLExample, except for the data controller subsystem. The
data controller subsystem in the model uses a RAM of size 2*fftLenSinFFT (as shown in the figure
below) to store input samples, reads out the valid samples while padding zeros between them and
then passing them to the FFT. While the input data is being written into one half of the memory, the

4-30

HDL Implementation of a Variable-Size FFT

data is read from the other half of the memory. As a result, the total latency is increased by
fftLenSinFFT.

modelname = 'VariableSizeFFTArbitraryValidPatternHDLExample';
load system(modelname);
open_system([modelname '/Variable Size FFT using Single FFT/Data Controller']);

- = = =
. - - - -
pors (. [(I
-2 ’m_‘ . Inserting zeros in between data
— el)
waf o 72 D)
. . -
=y =
- - :
[[
Read address generator
Generate ti lid
B — 2
Frame start Sync Sample FFT length at frame Start upFe zt 4
[anens
=y
[
=y]
| : [[Pt
= : S ;
PR =] [

Sample FFT length at read enable

Arbitrary Input Data and Valid Generation

For generating arbitrary data and valid inputs, users can select any of these three options: zero
padding of fixed size in between data samples, zero padding at the end of data samples, and zero
padding of random size in between data samples. The input data and valid generation for these three
different zero padding patterns are shown below. The
VariableSizeFFTArbitraryValidPatternHDLExample model uses the generated data and valid for
simulation and verification.

% Initialization of input data and valid
dataln = zeros(length(fftLenVecMulFFTs)*fftLenSinFFT,1);
validIn = false(length(fftLenVecMulFFTs)*fftLenSinFFT,1);
zeroPaddingPattern = 'InBetween'; %'AtEnd', 'Random’
switch zeroPaddingPattern
case 'InBetween'
% Zero padding in between input data samples
for ind = 1:length(fftLenVecMulFFTs)
% Generate data of FFT length samples
randInputData = complex(randn(l,fftLenVecMulFFTs(ind)),randn(1l, fftLenVecMulFFTs(ind)
% Zero padding in between input data samples
upSamplingFac = fftLenSinFFT/fftLenVecMulFFTs(ind);
dataIn((ind-1)*fftLenSinFFT+1:fftLenSinFFT*ind) = upsample(randInputData,upSamplingF:
% Valid corresponding to the generated data
validIn((ind-1)*fftLenSinFFT+1l:upSamplingFac:fftLenSinFFT*ind) = true;
end
case 'AtEnd'
% Zero padding at the end of input data samples
for ind = 1:length(fftLenVecMulFFTs)
% Generate data of FFT length samples
randInputData = complex(randn(l,fftLenVecMulFFTs(ind)),randn(1l, fftLenVecMulFFTs(ind)
% Zero padded data

4-31

4 reatured Examples

4-32

end

dataIn(((ind-1)*fftLenSinFFT+1):((ind-1)*fftLenSinFFT+fftLenVecMulFFTs(ind))) = rand
% Valid corresponding to data generated
validIn(((ind-1)*fftLenSinFFT+1):((ind-1)*fftLenSinFFT+fftLenVecMulFFTs(ind))) = tru
end
otherwise % Random
for ind =1:1length(fftLenVecMulFFTs)
% Zero padding at random
randIndices = randperm(fftLenSinFFT);
% Generate data of FFT length samples
randInputData = complex(randn(l,fftLenVecMulFFTs(ind)),randn(1l, fftLenVecMulFFTs(ind)
indices = randIndices(1l:fftLenVecMulFFTs(ind));
% If the random indices does not have the first sample
if(sum(indices==1)==0)
indices(1l) = 1;
end
% Zero padded data
dataIn(indices+(ind-1)*fftLenSinFFT) = randInputData;
% Valid corresponding to data generated
validIn(indices+(ind-1)*fftLenSinFFT) = true;
end

Run the Simulink model

Before running the model, make sure that dataIn, validIn, fftLenIn, and the necessary variables
are initialized.

sim(modelname) ;

Verification

datalOutl
dataOut2

outl(:);
out2(:);

figVSFAIV = figure('Visible', 'off');

plot(abs(datalutl-datalut2));

title('Difference between the two outputs for arbitrary valid pattern')
xlabel('Sample Index');

ylabel('Error');

figVSFAIV.Visible = 'on';

bdclose(modelname) ;

HDL Implementation of a Variable-Size FFT

Difference between the two outputs for arbitrary valid pattern

0.8r

0.2r

Error
[

__1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000

Sample Index

HDL Code Generation and Verification
To generate the HDL code referenced in this example, an HDL Coder™ license is needed.

You can use the commands makehdl and makehdltb to generate the HDL code and the testbench for
the subsystems.

HDL code generated for the Variable Size FFT subsystems were synthesized for the Xilinx®
Zyng®-7000 ZC706 board. The synthesis results are shown in the following table.

Single FFT supporting
Hardware Type Single FFT arbitrary input valid Multiple FFTs
pattern
Slice LUT 5580 5732 19736
Slice Registers 8035 8082 29303
RAMB36E1 2 6 4
RAMBI18E1 18 12 43
DSPA8E1 16 16 58
Max Freq (in MHz)
265 237.6 243.1
Post P&R

4-33

4 reatured Examples

The table above shows that implementing a variable-size FFT using a single FFT uses fewer hardware
resources than using a multiple FFT solution. To support an arbitrary input valid pattern, the
hardware implementation uses more RAM.

See Also
FFT HDL Optimized

4-34

Accelerate BER Measurement for Wireless HDL LTE Turbo Decoder

Accelerate BER Measurement for Wireless HDL LTE Turbo
Decoder

This example shows the workflow to measure the BER of the Wireless HDL Toolbox™ LTE Turbo
Decoder block using parsim to parallelize the simulations across EbNo points. This approach can be
used to accelerate other Monte Carlo simulations.

Introduction

HDL implementations of reference applications are often complex and take a lot of time to simulate.
As a result, figuring out the bit error rate (BER) performance by running multiple simulations at
different SNR points can be very time consuming. One way to optimize this is to parallelize
simulations using the parsim command. The parsim command runs multiple simulations in parallel
when called with a Parallel Computing Toolbox™ license available. This example measures the BER of
the LTE Turbo Decoder. To achieve sufficient statistical accuracy, around 100 errors must be obtained
at the decoder for each EbNo value. This translates to 1e8 bits at a BER of 10e-6. This type of Monte
Carlo simulation is a suitable candidate to parallelize using parsim, where the BER for every EbNo
point is performed on workers in parallel.

For every parallel simulation, this example sets up the input data as follows:

Generate input data frames

Turbo encode

QPSK modulate

Add AWGN based on the EbNo value
Demodulate the noisy symbols

o A W N R

Generate soft decisions

The soft decisions become the input to the LTE Turbo Decoder in Simulink®. The turbo decoded bits
are compared to the transmitted bits to calculate the BER. Each parallel simulation sends the results
back to the main host.

Configure Parameters and Simulation Objects

The total number of information bits for each EbNo point, bitsPerEbNo, is divided over multiple
simulations, defined by parsimPerEbNo. In this way, every simulation runs bitsPerParsim bits for
a single EbNo point. The total number of simulations is length (EbNo) *parsimPerEbNo. This
example is configured to run only a small number of bits for demonstration purposes. In a real
scenario, you must run a sufficient number of samples through the decoder for an accurate measure
of the BER at the higher EbNo points. When choosing these parameters, consider the memory
resources available on the host. A large input data set per simulation or large number of workers
could result in slow down or memory exhaustion. The structure simParam contains the parameters
required for each simulation. This structure is sent to the simulations at a later stage.

EbNo = 0:0.1:1.1;

bitsPerEbNo = 1le5; %1e8;

parsimPerEbNo 2; %10;

bitsPerParsim ceil(bitsPerEbNo/parsimPerEbNo) ;

simParam.blkSize = 6144;
simParam.turbolterations = 6;
simParam.numFrames = ceil(bitsPerParsim/simParam.blkSize); % frames per simulation

4-35

4 reatured Examples

simParam.
simParam.

tailBits

simParam.
simParam.

modScheme = 'QPSK';

bps = 2;

= 4;

encoderRate = simParam.blkSize/(3*(simParam.blkSize+tailBits));
samplesizeIn = floor(1l/simParam.encoderRate);

bits per symbol
encoder property

rate 1/3 Turbo code

3 samples in at a tim

o® o o o°

simParam.inframeSize = simParam.samplesizeIn*(simParam.blkSize+tailBits);

model = 'LTEHDLTurboDecoderBERExample';
open_system(model);

inFrames(:)

4-36

sample | convert —m|data data | decodedDut
Frame
P frame To Comvert to fi LTE Turbo Decoder
Samples !
ctrl | cirl ctrl - —p| validOut
i <yalid=
Turbo Decoder

Start a local parallel pool with minimum of 1 and maximum of maxNumwWorkers. If a Parallel
Computing Toolbox™ licence is not available, the simulations will be serialized. The actual size of the
pool depends on the number of available cores. Each parallel worker gets assigned one core on which
an independent MATLAB® session is launched.

maxNumWorkers = 3;
pool = parpool('local’', [1 maxNumWorkers]);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 3).

Preallocate a parsim object to hold the data required for each simulation. The object can also include
handles to functions, which the model calls before or after a simulation. The MATLAB® session on
which parsim is executed acts as the main host. The main host is responsible for launching the
simulations on the workers, sending the required data to every worker, and receiving the results.

parsimIn(1l:length(EbNo)*parsimPerEbNo) = Simulink.SimulationInput(model);
Replicate EbNo points to set up parsimPerEbNo simulations.

repEbNo
repEbNo

repmat (EbNo,parsimPerEbNo,1);
repEbNo(:);

Minimizing data transmission to the workers improves the performance and stability of the main host.
Therefore, this example generates the input data in-model, rather than passing the large input data
set to each worker. Input data is generated using the pre-simulation function, presimGenInput and
the BER calculation is also performed in the post-simulation function, postsimOutput. These
function handles are assigned to each SimulationInput object. The post-simulation function is
assigned inside the pre-simulation function as shown in the section Pre-Simulation and Post-
Simulation Functions.

for noiseRatio = 1l:length(repEbNo)
% Calculate the noise variance.
EsNo = repEbNo(noiseRatio) + 10*loglO(simParam.bps);
snrdB = EsNo + 10*loglO(simParam.encoderRate);
noiseVar = 1./(10.”(snrdB/10));

Accelerate BER Measurement for Wireless HDL LTE Turbo Decoder

% Use random but reproducible data.
seed = noiseRatio;

% For Rapid Accelerator mode, set the simulation
% stop time before compilation.
parsimIn(noiseRatio) = parsimIn(noiseRatio).setModelParameter('StopTime',num2str(simParam.nui

% Set pre-simulation function.
parsimIn(noiseRatio) = parsimIn(noiseRatio).setPreSimFcn(@(simIn) presimGenInput(simIn,noise
end

Run and show progress of the simulations in the command window. At the end of the simulations, the
results are sent back to the main host in an array of structures, parsimOut, with one entry created
per simulation. Once simulations are complete, shut down the parallel pool.

parsimQut = parsim(parsimIn, 'ShowProgress', 'on', 'StopOnError','on');
delete(pool);

[16-Jan-2021 00:32:26] Checking for availability of parallel pool...
[16-Jan-2021 00:32:26] Starting Simulink on parallel workers...
[16-Jan-2021 00:33:02] Configuring simulation cache folder on parallel workers...
[16-Jan-2021 00:33:02] Loading model on parallel workers...
[16-Jan-2021 00:33:14] Running simulations...

[16-Jan-2021 00:36:20] Completed 1 of 24 simulation runs
[16-Jan-2021 00:36:20] Completed 2 of 24 simulation runs
[16-Jan-2021 00:36:20] Completed 3 of 24 simulation runs
[16-Jan-2021 00:36:29] Completed 4 of 24 simulation runs
[16-Jan-2021 00:36:30] Completed 5 of 24 simulation runs
[16-Jan-2021 00:36:30] Completed 6 of 24 simulation runs
[16-Jan-2021 00:36:37] Completed 7 of 24 simulation runs
[16-Jan-2021 00:36:37] Completed 8 of 24 simulation runs
[16-Jan-2021 00:36:37] Completed 9 of 24 simulation runs
[16-Jan-2021 00:36:47] Completed 10 of 24 simulation runs
[16-Jan-2021 00:36:47] Completed 11 of 24 simulation runs
[16-Jan-2021 00:36:47] Completed 12 of 24 simulation runs
[16-Jan-2021 00:36:55] Completed 13 of 24 simulation runs
[16-Jan-2021 00:36:55] Completed 14 of 24 simulation runs
[16-Jan-2021 00:36:55] Completed 15 of 24 simulation runs
[16-Jan-2021 00:37:02] Completed 16 of 24 simulation runs
[16-Jan-2021 00:37:02] Completed 17 of 24 simulation runs
[16-Jan-2021 00:37:02] Completed 18 of 24 simulation runs
[16-Jan-2021 00:37:09] Completed 19 of 24 simulation runs
[16-Jan-2021 00:37:09] Completed 20 of 24 simulation runs
[16-Jan-2021 00:37:09] Completed 21 of 24 simulation runs
[16-Jan-2021 00:37:18] Completed 22 of 24 simulation runs
[16-Jan-2021 00:37:18] Completed 23 of 24 simulation runs
[16-Jan-2021 00:37:18] Completed 24 of 24 simulation runs
[16-Jan-2021 00:37:18] Cleaning up parallel workers...
Parallel pool using the 'local' profile is shutting down.

Plot BER

Extract the BER values from the array of structures. Combine the BER results for each EbNo point
and find the average BER per EbNo point.

BER [parsimQOut(:).BER];
BER = transpose(reshape(BER,parsimPerEbNo,length(BER)/parsimPerEbNo));
avgBER = mean(BER,2);

4-37

4 reatured Examples

semilogy (EbNo,avgBER, '-0");
grid;

xlabel('Eb/No (dB)"');
ylabel('Bit Error Rate');

‘]Dﬂl: T T T T T T T T T

=
T

}_—9——9———_8\6\& 1

3 R@x

I\x-\.

-
=}
L

Bit Error Rate
=
(=]

-

=
L
T

o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Eb/No (dB)

1074

The plot below shows the results of the BER measurement with bitsPerEbNo = 1e8.

4-38

Accelerate BER Measurement for Wireless HDL LTE Turbo Decoder

0% \ E

Bit Error Rate

104 \ 3

107 F \

0 0.2 0.4 0.6 0.8 1 1.2
Eb/No (dB)

Pre-Simulation and Post-Simulation Functions

These functions independently generate input data and process output data for each simulation,
which eliminates the need for the main host to store the data in memory for all simulations. The
presimGenInput function generates input bits, then encodes, modulates and converts them to soft
decisions. To make the input frames and parameters available to the model, they are assigned as
variables in the global workspace using the setVariab'le function.

function simIn = presimGenInput(simIn,noiseVar,seed,simParam)
rng(seed);

% Preallocate arrays for speed.
txBits = zeros(simParam.blkSize, simParam.numFrames, 'int8"');
inFrames = zeros(simParam.inframeSize,simParam.numFrames, 'single');

Generate input frames, turbo encode, modulate and add noise based on

noise variance.

for currentFrame = 1l:simParam.numFrames

txBits(:,currentFrame) = randi([0 1],simParam.blkSize,1);

codedData = lteTurboEncode(txBits(:,currentFrame));

txSymbols = lteSymbolModulate(codedData,simParam.modScheme);

noise = (sqrt(noiseVar/2))*complex(randn(size(txSymbols)),randn(size(txSymbols)));
rxSymbols = txSymbols + noise;

inFrames(:,currentFrame) = lteSymbolDemodulate(rxSymbols,simParam.modScheme, 'Soft');

%
%

end

4-39

4 reatured Examples

4-40

% Set up parameters for Frame to Samples block to serialize data.
% Leave sufficient gap between frames.

simParam.idleCyclesBetweenSamples = 0;

halfIterationLatency = (ceil(simParam.blkSize/32)+3)*32; % window size = 32

algFrameDelay = 2*simParam.turboIterations*halflIterationLatency+(simParam.inframeSize/simPar:
simParam.idleCyclesBetweenFrames = algFrameDelay;

% Assign variables to global workspace.
simIn = simIn.setVariable('inFrames',inFrames);
simIn = simIn.setVariable('simParam',simParam);

% Set post-simulation function and send required data.
simIn = simIn.setPostSimFcn(@(simOut) postsimOutput(simOut,txBits,simParam));

end

The post-simulation function receives the outputs of the simulation and computes the BER. The
results are stored in a structure results which parsim returns as parsimOut.

function results = postsimOutput(out, txBits, simParam)
decodedOutValid = out.decodedOut(out.validOut);

results.numErrors = sum(xor(txBits(:),decodedOutValid));
results.BER = results.numErrors/(simParam.numFrames*simParam.blkSize);
end

Conclusion

This example showed how to efficiently measure the BER curve for the Wireless HDL LTE Turbo
Decoder block using parsim. If a parallel pool is not used, the linear time to complete the simulations
would be approximately 16 hours. As a result of parallelization, the time to run all simulations came
down to 5.4 hours, using 3 workers. This was achieved by running the simulations in Rapid
Accelerator mode. This workflow can be applied to complex reference applications that require
Monte Carlo or other simulations.

Encode message to RS codeword

Encode message to RS codeword

This example shows how to use the RS Encoder block to encode a message to a Reed-Solomon (RS)
codeword. In this example, a set of random inputs frames are generated and provided to the
comm.RSEncoder System object. Using the whdlFramesToSamples function, these frames are
converted into samples and provided as input to the RS Encoder block. The output of the RS Encoder
block is then compared with the output of the comm.RSEncoder System object to check whether the
encoded output codeword for the given input message is same. By default, the puncturing option is
disabled in this example. To enable puncturing, set the puncturing value to true. This example model
supports HDL code generation for the RS Encoder subsystem.

Set Up Input Data Parameters

Set up these workspace variable for the models to use. These variables configure the RS Encoder
block inside the model.

nMessages = 3;

n = 255; % Specify codeword length
k = 239; % Specify message length
m = n-k; % Parity length
inDataType = fixdt(0,ceil(log2(n)),0);

puncturing = false; true for puncturing

puncturePattern = randsrc(m,1,[0 1]);
shortMsg = false;
kl = k-1;

Considered, when punturing is true
true for shortened message
Considered when shortMsg is true

o® o o o°

Generate Random Input Samples

Generate random samples using n, k, and m variables and provide those generated samples as input
to the comm.RSEncoder System object.

hRSEnc = comm.RSEncoder;
hRSEnc.CodewordLength = n;
hRSEnc.MessagelLength = k;

if isequal(shortMsg,true)
hRSEnc.ShortMessageLength = k1;
else
kl = k;
end

if isequal(puncturing,true)
hRSEnc.PuncturePatternSource = "Property";
hRSEnc.PuncturePattern = puncturePattern;
puncLen = n-k-sum(hRSEnc.PuncturePattern);

else
puncLen = 0;

end

data = cell(1l,nMessages);
refData = (zeros(kl+m-puncLen,nMessages));

for ii = l:nMessages
data{ii} = randi([0 n],kl1l,1);
refData(:,ii) = hRSEnc(data{ii});
end

4-41

4 reatured Examples

refOutput = refData(:);
Generate Input Control Samples for the Simulink® Model

gapBetweenFrames = n-k;
gapBetweenSamples = 0;

[simDataIn, ctrlIn] = whdlFramesToSamples(data,gapBetweenSamples, gapBetweenFrames);
simStart = ctrlIn(:,1);

siméEnd = ctrlIn(:,2);

simValidIn = ctrlIn(:,3);

stopTime = length(simValidIn);

Run Simulink Model
Run the Simulink model. The block imports the workspace variables and generates the output.

modelname = 'HDLRSEncoder';
open_system(modelname);
if isequal(puncturing,true)
set param([modelname '/RS Encoder/RS Encoder'], 'PuncturePatternSource','on');
set param([modelname '/RS Encoder/RS Encoder'], 'PuncturePattern',['["' num2str(puncturePatter!
end
out = sim(modelname);

wantE
datalut | dataOut
. cdouble untE
simDataln P convert | dataln -
bookaan
| startOut
<star>
samplacontrol | fboolean
il Out == e p| endCut
) bxolaan bociaan =end>
simStart » boolean - | start boolaan
start ook i
p| validOut
wvalid=
o boolaan bookaan Sarmnle ot samplacy 1
simEnd » boolean - > er-j'%rdzlér‘;;_n;:c cirl === crlln booiasRample Contral
N nextFrame F— "
] Bus Selector p| nexiiocs
. . baoodaan boolaan
simWalidin » boolean — | valid
valid
IE RS Encoder

Export the Simulink Block Output to the MATLAB® Workspace

The encoded samples from the RS Encoder block are exported to the MATLAB workspace.
simOutput = dataOut(validOut);

Compare the Simulink Block Output with the MATLAB Function Output

Capture the output of the RS Encoder block. Compare that output with the output of the
comm.RSEncoder System object.

fprintf('\nHDL RS Encoder\n');

difference = double(simOutput) - double(refOutput);
fprintf('\nTotal Number of samples differed between Simulink block output and MATLAB function ou

4-42

Encode message to RS codeword

HDL RS Encoder

Total Number of samples differed between Simulink block output and MATLAB function output is: 0O

See Also

Blocks
RS Encoder

4-43

4 reatured Examples

HDL Implementation of AWGN Generator

4-44

This example shows the implementation of an additive white Gaussian noise (AWGN) generator that
is optimized for HDL code generation and hardware implementation. The hardware implementation
of AWGN accelerates the performance evaluation of wireless communication systems using an AWGN
channel. In this example, the Simulink® model accepts signal-to-noise ratio (SNR) values as inputs
and generates Gaussian random noise along with valid signal. The example supports SNR input
ranges from -20 to 31 dB in steps of 0.1 dB.

Modern wireless communication systems includes many different simulation parameters, such as
channel bandwidth, modulation type, and code rate. The performance evaluation of these systems
with these simulation parameters is a bottleneck. Hardware capabilities of FPGAs can speed up
simulations.

Model Architecture
% Run this command to open the HDLAWGNGenerator model.

modelname = 'HDLAWGNGenerator';
open_system(modelname);

HDL AWGN Generator

awgn —h%wg nOut

Y

snrdB

convert

Y

snrdBSiminput

valid validOut

Y

AWGNGenerator

Copyright 2020 The MathWorks, Inc.

HDL Implementation of AWGN Generator

This example demonstrates the implementation of an AWGN generator based on the Box-Muller
method. The Box-Muller method is widely adopted for Gaussian noise generation because of its
hardware-friendly architecture and constant output rate. The top-level structure of the model
includes these three subsystems.

* SNR dB to Linear Scale Converter

* Gaussian Noise Generator with Unit Variance

* Gaussian Noise Generator with Required Variance
% Run this command to open the subsystems inside AWGNGenerator model.

open_system([modelname '/AWGNGenerator']);

p 710 | noielar
awagn

bul] | 20
convert | snrdE noiselar
snrdB

validOut -——(" 2)
xl x1 valid
dBtolLinearConverter GaussianMoieWithUnitvar GaussianMoiseWithRegyar

SNR dB to Linear Scale Converter

The dBtoLinearConverter subsystem takes an SNR value in dB as input and converts it into noise
variance in a linear scale. This noise power is used to multiply the output of the Gaussian noise with
unit variance. This lookup table approach is used for converting an SNR value in dB to a noise power
value in a linear scale. During the conversion, the signal power is assumed to be 1. This subsystem
has a latency of 1 clock cycle.

Gaussian Noise Generator with Unit Variance

The GaussianNoiseWithUnitVar subsystem generates Gaussian noise with unit variance by using the
Box-Muller method. The Box-Muller method uses two uniformly distributed random variables to
generate two normally distributed random variables through a series of logarithmic, square root,
sine, and cosine operations as shown in this figure. Those two uniformly distributed random varibles
are generated using the Tausworthe algorithm.

4-45

4 reatured Examples

4-46

Tausworthe uint32 fi(0,17,13)
f = fixi1,16,11)
32-bit URNG a concat T(045.45) Logarittm 203129} square Root Product === X0
fix(1.16.15) |
Tausworthe uint32 oyl fi0,16.,16) o Sine/Cosine g0 1 16,11
32-bit URNG B Huso) o ix(1.16.15) | Product x1
gl 4

Implementation of HDL Tausworthe Uniform Random Number

The Tausworthe Uniform Random Number Generator module is used to generate two 32-bit uniform
random integers. Each 32-bit uniform random number with improved statistical properties is
obtained by combining three linear feedback shift register (LFSR) based uniform random number
generators (URNGs). This implementation requires these two seeds: TausURNG1 and TausURNG2.
The whdlexamples.hdlawgnGen init.m script file initializes these seeds.

The ConcatandExtract subsystem accepts 32-bit uniform random integers, a and b, to generate two
uniform random numbers, u0 and ul, in the range [0, 1) with bit-widths 48 and 16, respectively. u0 is
generated by concatenating the 32-bit value of a and higher 16 bits of b. Uniform random number ul
is generated by extracting the lower 16 bits of b.

open_system([modelname '/AWGNGenerator/GaussianNoiseWithUnitVar/TausUniformRandGen']);

close system([modelname '/AWGNGenerator/GaussianNoiseWithUnitVar/TausUniformRandGen']);
open_system([modelname '/AWGNGenerator/GaussianNoiseWithUnitVar/TausUniformRandGen/TausURNG1']);
close system([modelname '/AWGNGenerator/GaussianNoiseWithUnitVar/TausUniformRandGen/TausURNG1'])

Implementation of HDL Logarithm

HDL logarithm subsystem evaluates the approximate logarithm based on the piecewise linear
polynomial method. This module has latency of 3 clock cycles. Implementation of the HDL logarithm
involves these three steps.

1 Range Reduction - In this step, the original range of the input, which is [0, 1-2°(-48)) is reduced
to a more convenient smaller range of [1, 2). The log function is approximated on the reduced
range in the next step.

2 Function Evaluation - The log function is approximated over 256 equally spaced segments in the
range [1, 2) by using a second-degree polynomial. Coefficients of the second-degree polynomial
are obtained using the polyfit function. These coefficients are stored in a lookup table, which
is indexed using the first 8 bits of input to the function evaluation block.

3 Range Reconstruction - The result of the function evaluation is expanded back to the original
range. A bit left shift operation is used for range reconstruction and to implement the —2*10g
function.

Run this command to open HDL logarithm subsystem.

open_system([modelname '/AWGNGenerator/GaussianNoiseWithUnitVar/logImplementation/log']);

HDL Implementation of AWGN Generator

e] ¥y & By B
CO—> (1)
ud(48.48) =
B & | exp_gmln exp_sCut | cxp_8
RangeReduction FuncticnEvaluation RangeReconstruction

Implementation of HDL Square Root

The HDL Square root subsystem evaluates approximate square root based on the piecewise linear
polynomial method. This module has a latency of 2. The implementation of the HDL square root
involves these three steps.

1 Range Reduction - The input data type to the module is fi(0, 31, 24). This range is reduced
to a smaller range of [1, 4). The square root function is approximated on the reduced range in the
next step.

2 Function Evaluation - The square root function is approximated over 64 equally spaced segments
in the range [1, 2) and [2, 4) by using a first-degree polynomial. Coefficients of the first-degree
polynomial are stored in a lookup table, which is indexed using the first 6 bits of input to the
function evaluation block.

3 Range Reconstruction - The result of the function evaluation is expanded back to the original
range using a left shift operation.

close system([modelname '/AWGNGenerator/GaussianNoiseWithUnitVar/logImplementation/log']);
open_system([modelname '/AWGNGenerator/GaussianNoiseWithUnitVar/SqrtImplementation/SqrtEval']);

®_f P c_f y_f bl
u pESE B passin - passOut | pass f —h-
u f
exp_f Bl 2xp_fln exp_fOut | 2xp_f
RangeReduction FunctiznEvaluation RangeReconstruction

Implementation of HDL Sine and Cosine

The HDL optimized implementation of a sine or cosine function uses a lookup table approach. Sin and
Cos are implemented using the existing Sine HDL Optimized (HDL Coder) and Cosine HDL Optimized
(HDL Coder) blocks in the HDL Coder / Lookup Tables library.

close system([modelname '/AWGNGenerator/GaussianNoiseWithUnitVar/SqrtImplementation/SqrtEval'l]);
Gaussian Noise Generator with Required Variance

The GaussianNoiseWithReqVar subsystem converts Gaussian noise with unit variance to Gaussian
noise with required variance. This subsystem takes inputs from dBToLinearConvertor and
GaussianNoiseWithUnitVar subsystems. The linear noise variance obtained from

4-47

4 reatured Examples

4-48

dBToLinearConvertor is multiplied with normally distributed random variables obtained from
GaussianNoiseWithUnitVar.

Results and Plots

The whdlexamples.hdlawgnGen init.m script file is used to specify the SNR range, generate the
required number of noise samples, initialize the seeds for TausURNG1 and TausURNG2 subsystem
and to generate coefficients for the function evaluation of the HDL log and square root.

The whdlexamples.hdlawgnGen init.m script file is the initialization function of
HDLAWGNGenerator model. This function generates the input data and initializes the seeds for
tausURNG and coefficients for the function evaluation. Simulate HDLAWGNGenerator.slx to
generate 1076 valid AWGN samples for each SNR of 5 dB and 15 dB. The implementation is pipelined
to maximize the synthesis frequency, generating AWGN with an initial latency of 11. Plot the
probability density function (PDF) of the AWGN output.

latency = 11;
NumOfSamples = 1076;

% Simulate the model

open_system('HDLAWGNGenerator');

set param(gcs, 'SimulationMode', 'Accel');

fprintf('\n Simulating HDL AWGN Generator...\n');

outSimulink = sim('HDLAWGNGenerator', 'ReturnWorkspaceOutputs','on');
fprintf('\n Simulation complete.\n');

awgnSimulink = outSimulink.awgnOut;

% Plot PDF

figure;

title('PDF for Real Part of AWGN');

hold on

histogram(real (awgnSimulink(latency+1:NumOfSamples+latency)),500,
'Normalization', 'pdf', 'BinLimits',[-2 2], 'FaceColor', 'blue’,
'"EdgeColor', 'none');

histogram(real (awgnSimulink(NumOfSamples+latency+1l:end)),500,...
'Normalization', 'pdf', 'BinLimits',[-2 2], 'FaceColor', 'yellow',
'"EdgeColor', 'none');

legend('5 dB SNR','15 dB SNR');

figure;

title('PDF for Imaginary Part of AWGN');

hold on

histogram(imag(awgnSimulink(latency+1:NumOfSamples+latency)),500,
'Normalization', 'pdf', 'BinLimits',[-2 2], 'FaceColor', 'blue’,
'"EdgeColor', 'none');

histogram(imag(awgnSimulink(NumOfSamples+latency+1l:end)),500,
'Normalization', 'pdf', 'BinLimits',[-2 2], 'FaceColor', 'yellow',
'EdgeColor', 'none');

legend('5 dB SNR','15 dB SNR');

Simulating HDL AWGN Generator...

Simulation complete.

HDL Implementation of AWGN Generator

HDL AWGN Generator

awgn —pEwg nOut

Y

convert snrdB

Y

snrdBSiminput

vealid validOut

h

AWGMNGenerator

Copyright 2020 The MathWorks, Inc.

4-49

4 reatured Examples

4-50

3.5

2.5

1.5

0.5

PDF for Real Part of AWGN

N 5 4B SNR
15 dB SNR

HDL Implementation of AWGN Generator

PDF for Imaginary Part of AWGN
35

N 5 4B SNR
15 dB SNR

2587

15

Verification

Compare the output of the AWGN Simulink model with the output of the HDL equivalent AWGN
MATLAB® function.

NumOfSamples = 1000;

% MATLAB output

fprintf('\n Simulating MATLAB HDL AWGN Generator for comparison...\n');
awgnMatlab=whdlexamples.hdlawgn(snrdBSimInput(1:NumOfSamples), seedsURNG1, seedsURNG2);
fprintf('\n Simulation complete. \n')

% Compare MATLAB and Simulink outputs

figure;

ax=axes('FontSize', 20);

plot(1:1000, real([awgnSimulink(latency+1:NumOfSamples+latency) awgnMatlabl));
xlabel(ax, 'Number of Samples');

ylabel(ax, 'Real Part of AWGN');

title(ax, 'Comparison of MATLAB and Simulink Output (Real Part)');
legend('Simulink output', '"MATLAB output');

figure;

ax=axes('FontSize', 20);
plot(1:1000,imag([awgnSimulink(latency+1:NumOfSamples+latency) awgnMatlabl));
xlabel(ax, 'Number of Samples');

ylabel(ax, 'Imaginary Part of AWGN');

title(ax, 'Comparison of MATLAB and Simulink OQutput (Imaginary Part)');
legend('Simulink output', '"MATLAB output');

4-51

4 reatured Examples

Simulating MATLAB HDL AWGN Generator for comparison...

Simulation complete.

Comparison of MATLAB and Simulink Output (Real Part)
1_5 T T T T T T T T T

Simulink output
MATLAB output

=
o

Real Part of AWGN
[}

S
n

o 100 200 300 400 500 600 YOO 8OO 900 1000
Mumber of Samples

4-52

HDL Implementation of AWGN Generator

Comparison of MATLAB and Simulink Output {Imaginary Part)

1.5

Simulink output
MATLAB output

Imaginary Part of AWGN

__.1 -5 i i i i i i i i i
0 100 200 300 400 500 600 YOO 800 900 1000

Mumber of Samples

HDL Code Generation

To check and generate the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, enter this command at the MATLAB command prompt.

makehdl ('HDLAWGNGenerator/AWGNGenerator')

To generate a test bench, enter this command at the MATLAB command prompt.

makehdltb('HDLAWGNGenerator/AWGNGenerator')

In this example, HDL code generated for the AWGNGenerator module is implemented for the Xilinx®
Zyng®-7000 ZC706 board. The implementation results are shown in this table.

Hardware Type Usage

Slice LUT 6171
Slice Registers 1668
RAMBI8EL 9
DSP48E1 16
Max Freq (MHz) 250

4-53

4 reatured Examples

References

1.].D. Lee,].D. Villasenor, W. Luk, and PH.W. Leong. “A Hardware Gaussian Noise Generator Using
the Box-Muller Method and Its Error Analysis,” 659-71. IEEE, 2006. https://doi.org/10.1109/

TC.2006.81.

4-54

https://doi.org/10.1109/TC.2006.81
https://doi.org/10.1109/TC.2006.81

HDL Implementation of Digital Predistorter

HDL Implementation of Digital Predistorter

This example shows the implementation of a digital predistorter (DPD) model that is optimized for
HDL code generation and hardware implementation. The predistortion mechanism is executed in two
stages. In the first stage, a set of DPD coefficients are estimated based on the input and output data
of the power amplifier (PA). In the second stage, the input data of the PA is predistorted based on the
estimated DPD coefficients and provided as new input to the PA. This example demonstrates a
system-level simulation in which the Digital Predistorter subsystem generates HDL code, while the
DPD coefficient estimation generates C/C++ code. This example model supports only Normal and
Accelerator simulation modes.

Digital Predistortion

Digital predistortion is a baseband signal processing technique that is used for correcting
impairments in radio frequency (RF) power amplifiers. These impairments cause out-of-band
emissions or spectral regrowth and in-band distortion, which results in an increased bit error rate
(BER) and a decreased throughput of the system. Power amplifiers cause unwanted effects in the
system due to their nonlinear behavior. Communication systems using orthogonal frequency division
multiplexing (OFDM), such as a wireless local area network (WLAN), worldwide interoperability for
microwave access (WiMax), long term evolution (LTE), and 5G new radio (NR), are vulnerable to
these unwanted effects. A precorrection is applied on the signal so that the cascade of the DPD and
PA is close to an ideal, linear, and memoryless system. This linearization can improve PA power
efficiency and can be more spectrum efficient. This figure shows the top-level structure of the
example.

Run this command to open the example.

modelname = 'DPDHDLExample’;
open_system(modelname) ;

| HDL Implementation of Digital Predistorter |

Spectrum
Analyzer TX

Amplifier]

Output_RF
o SL RF in out
= — o >
et PAIn > » J—. 1\
et : [r—— Lo foutf—in %ul%12
- o
Baseband OFDM Transmitter PAnved — I CT Meamary 3 —]
_ SL RF In | >>0ut 1Q Modulator Power Amplifier Directional
Digital Predistorter Upconversion Coupler
to 2.4 GHz
AmplifierQ
PAIn
[DPDSwitch] PAIn valid <J Outport_IF Demod
coef
PA Out Fonver SL RF S adt % in -—ou1<] In
Switch to enable or disable DPD ctlDPD DPDSwitch) (s]
reset 4 rst
GHRPEM IRPEMSw-|ch||
RPEM Coeff i RF Demadulator LNA,
[RPEMSwitch) Generate reset Downconversion
from the control signals to 50 MHz.
Switch to enable or disable RPEM
rxinData
1 for enabla
0 for dissbla Baseband OFDM

Receiver
Copyright 2020 The MathWorks, Inc

4-55

4 reatured Examples

Baseband OFDM Transmitter

The Baseband OFDM Transmitter subsystem generates a baseband signal and provides that signal as
input data to the Digital Predistorter subsystem. The OFDMTx function in this subsystem generates an
OFDM transmitter waveform with synchronization, reference, header, pilots, and data signals and
returns txWaveform, txGrid, and diagnostics using the transmitter parameter set txParam. For
more information about the OFDMTx function, see the “HDL OFDM MATLAB References” on page 5-
121 example. You can also replace the Baseband OFDM Transmitter subsystem with any custom
transmitter to provide data to the Digital Predistorter subsystem. This figure shows the baseband
input signal generation for this example. Run this command to open the Baseband OFDM Transmitter
subsystem.

load system(modelname);
open_system([modelname '/Baseband OFDM Transmitter']);

o ul -10 dB »
4 boutData » " (0.316228) g &
OFDMT=Wrappear By data
CFDMTx
true g :2
“alid

Coefficients Estimation

The RPEM Coeff Estimation subsystem estimates a set of coefficients by collecting data from the
input and output of the PA. These coefficients are used to distort the signal before the power
amplifier. PA characteristics vary over time and operating conditions, so an adaptive recursive
prediction error method (RPEM) algorithm is used to estimate the DPD coefficients. The number of
coefficients to be estimated depends on the memory depth and polynomial degree of the PA. In this
example, because the total number of coefficients that need to be estimated is 25, the memory depth
and polynomial degree of the PA are set to 5. For more information about the RPEM, see [1]. To
generate C/C++ code for RPEM Coeff Estimation subsystem, use the slbuild command. Run this
command to open the RPEM Coeff Estimation subsystem.

load_system(modelname);
open_system([modelname '/RPEM Coeff Estimation']);

: i
P& In
G r——3 X
PA In valid > . .
"
| Emor
T coef
G r———n cut o oo =
P& Ot :
reset
Monlinear Products reset RPEM

4-56

HDL Implementation of Digital Predistorter

Digital Predistorter

The Digital Predistorter subsystem distorts the input data using the coefficients estimated by the
RPEM Coeff Estimation subsystem. The DPD design in this example is based on a memory polynomial,
which corrects the nonlinearities and memory effects in the PA. The estimated coefficients and the
generated input data are provided as input to the DPD for applying predistortion. The input data is
first placed in a shift register based on the memory depth. Second, this vector is concatenated with
the nonlinear products of the data depending on the polynomial degree. This concatenation forms a
vector of 25 that means memory depth times degree elements. The dot product of the obtained vector
and estimated coefficients provides the predistorted input that is fed as input to PA after upsampling.
Run this command to open the Digital Predistorter subsystem.

load system(modelname);
open_system([modelname '/Digital Predistorter']);

Gr— Ea > 72 >
coef
outd g B ._(D
71 I data i F‘.':I
= outt > "
out? g 2 a3
outd >
71 | valid
. t4 |
dataValid wl Dot Product
MNon-Linear
Producis
> 2 > z? » 10 (2)
PA In Valid

RF Blocks Configuration

This example has a control switch to enable or disable predistortion and coefficient estimation. If you
enable the switch, the example provides the output data from the Digital Predistorter subsystem as
input to RF blocks. Otherwise, the example provides the output data from the Baseband OFDM
Transmitter subsystem as input to RF blocks as in-phase (I), quadrature-phase (Q) samples. These I/Q
samples are upsampled to 2.4 GHz and provided as input to the PA. The coefficient matrix required by
the PA is preloaded based on the standard-compliant LTE signal with a sample rate of 15.36 MHz.
These coefficients are stored in a MAT file, and the values are loaded while initializing the example.
In the other path, the data is passed through a low noise amplifier (LNA) and is down-converted
before providing it to the RPEM Coeff Estimation subsystem.

Baseband OFDM Receiver

The Baseband OFDM Receiver subsystem collects the down-converted data and provides it as an
input to the OFDMRx function. This function performs carrier frequency offset estimation and
correction, frame synchronization, OFDM demodulation, channel estimation, channel equalization,
phase offset correction, and decodes the transmitted bits. For more information about the OFDMRx
function, see the “HDL OFDM MATLAB References” on page 5-121 example.

4-57

4 reatured Examples

4-58

Verification and Results

Run the model. By default, the Digital Predistorter and RPEM Coeff Estimation are enabled. If you
disable the DPD, the error vector magnitude (EVM) increases, and the spectral regrowth in adjacent
channels increases. The constellation and spectrum analyzer diagrams show the results of running
the model with the DPD enabled.

sim(modelname) ;

Estimating carrier frequency offset ...
First four frames are used for carrier frequency offset estimation.
Estimated carrier frequency offset is 3.252304e+00 Hz.

Detected and processing frame 5

Header CRC passed
Modulation: 16QAM, codeRate=1/2 and FFT Length=128
Data CRC passed

Data decoding completed

Header CRC passed
Modulation: 16QAM, codeRate=1/2 and FFT Length=128
Data CRC passed

Data decoding completed

HDL Implementation of Digital Predistorter

4

File Tools View Simulation Help

B~ ® b =& - |0 8| 1AW

RBEW=13 kHz Sample rate=15.36 MHz |T=0.013

4-59

4 reatured Examples

A

[ib]
=
=
=
=1
=
<L
il
=
=
(4]
=
4]
=
)

Processing

File Tools VWiew Help L
@-=a a- B8k

¥ EVM / MER
¥ Settings

E . I::I
AER [dB)

In-phase Amplitude

Frame=1

4-60

HDL Code Generation and Implementation Results

To check and generate HDL for this example, you must have HDL Coder™. Use the makehdl and
makehdltb commands to generate the HDL code and test bench for the Digital Predistorter
subsystem.

The Digital Predistorter subsystem is synthesized on a Xilinx® Zynq®-7000 ZC706 evaluation board.
The frequency obtained after place and route is about 220 MHz. Create a table that displays the post
place and route resource utilization results for a 16-bit complex input.

F = table(...
categorical({'Slice LUT'; 'Slice Registers';'DSP'}),
categorical({'6028"'; '8115'; '160'}),
categorical({'218600"'; '437200'; '900'}),
categorical({'2.75"; '1.85'; '17.78'}),

'VariableNames',
{'Resources', 'Utilized', 'Available', 'Utilization (%)'});
disp(F);
Resources Utilized Available Utilization (%)

HDL Implementation of Digital Predistorter

Slice LUT 6028 218600 2.75

Slice Registers 8115 437200 1.85

DSP 160 900 17.78
References

1. Gan, Li, and Emad Abd-Elrady. ""Digital Predistortion of Memory Polynomial Systems Using Direct
and Indirect Learning Architectures." In Proceedings of the Eleventh IASTED International
Conference on Signal and Image Processing (SIP) (F. Cruz-Roldan and N. B. Smith, eds.), No.
654-802. Calgary, AB: ACTA Press, 2009.

See Also

Related Examples
. “HDL OFDM MATLAB References” on page 5-121
. “Digital Predistortion to Compensate for Power Amplifier Nonlinearities”

4-61

4 reatured Exa mples

Encode Streaming Data Using General CRC Generator HDL
Optimized Block for 5G NR Standard

This example shows how to use the General CRC Generator HDL Optimized block for encoding
streaming data according to the 5G NR standard.

In this example, the output of this block is compared with the function nrCRCEncode (5G Toolbox). A
cyclic redundancy check (CRC) is an error-detection code designed to detect errors in streaming
data. A CRC generator calculates a short fixed-length binary sequence checksum and appends it with
the data. A CRC detector performs a CRC on the data and compares the resulting checksum with the
appended checksum. If the two checksums do not match, an error is detected. The CRC generator
and detector are used in the 5G NR system to detect any errors in the transport blocks of control and
uplink and downlink data channels. The 5G NR standard specifies six different cyclic generator
polynomials: CRC6, CRC11, CRC16, CRC24A, CRC24B, and CRC24C. For more information about
these polynomials, see TS 38.212 Section 5.1 [1].

Generate Input Data for NR CRC Generator

Select a CRC polynomial specified in the 5G NR standard. Generate random input data of length
frameLen and control signals that indicate the frame boundaries. The example model imports the
MATLAB® workspace variables datalIn, startIn, endIn, validIn, sampleTime, and simTime.

CRCType = 'CRC24A'; % Specify the CRCType as 'CRC6','CRC11','CRC16', 'CRC24A','CRC24B' or 'CRC24C
frameLen = 100;
msg = randi([0 1], frameLen,1);

[dataIn,ctrlIn] = whdlFramesToSamples(msg);

dataIn = timeseries(logical(dataIn'’

));
startIn = timeseries(logical(ctrlIn(:
(:

,1
endIn = timeseries(logical(ctrlIn(:,2))
validIn = timeseries(logical(ctrlIn(:,3
sampleTime = 1;
simTime = length(ctrlIn(:,3)) + 100;

Run NR CRC Generator Model

The nrCRCGeneratorExampleInit.m script configures the General CRC Generator HDL Optimized
block by setting the parameters of the block based on the specified CRC generator polynomial,
CRCType. This script also provides input to the reference function nrCRCEncode (5G Toolbox). The
NR CRC Generator subsystem contains the General CRC Generator HDL Optimized block. Running
the model imports the input signal variables from the workspace and returns the CRC-encoded output
and control signals that indicate the frame boundaries. The model exports variables encOut and
ctrlOut to the MATLAB® workspace.

[poly,crcPolynomial,initState, finalXORValue] = nrCRCGeneratorExampleInit(CRCType);

open_system('NRCRCGeneratorHDL");
encOut = sim('NRCRCGeneratorHDL');

4-62

Encode Streaming Data Using General CRC Generator HDL Optimized Block for 5G NR Standard

boolaan
boolean | out startOut
startin start —— 1 <star>
boodaan S P b samplecontral samplacor] fbook=an
endin end Fample Contred b ctiln 0t e | out.endOut
Blus Creataor <gnd>
boolzan
validln valid booiean | 0
MR CRC Generator alid= out.validOut

E III

Y
¥

beerd e
dataln = dataln dataliut = out_dataOut

Sample Controd
Bus Selector

Copyright 2020 The MathWaorks, Inc.

Verify NR CRC Generator Results

Convert the streaming data output of the NR CRC Generator subsystem to frames. Compare those
frames with the output of the nrCRCEncode function.

startIdx = find(encOut.startOut);

endIdx = find(encOut.endOut);
dataOut = encOut.dataOut;

dataRef = nrCRCEncode(msg,poly);

bitErr = sum(abs(dataRef - dataOut(startIdx:endIdx)));

fprintf('CRC-encoded frame: Behavioral and HDL simulation differ by %d bits\n',6bitErr);
close _system('NRCRCGeneratorHDL");

CRC-encoded frame: Behavioral and HDL simulation differ by 0 bits

References

1 3GPP TS 38.212. NR ; Multiplexing and Channel Coding. 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network.

See Also

Blocks
General CRC Generator HDL Optimized

Functions
nrCRCEncode

4-63

Reference Applications

5 Reference Applications

NR HDL MIB Recovery for FR2

5-2

This example shows how to design a 5G NR master information block (MIB) recovery model which is
optimized for HDL code generation and hardware implementation, and supports both frequency
range 1 (FR1) and frequency range 2 (FR2).

Introduction

5G cell towers can operate in either FR1 or FR2 frequency bands. FR1 covers frequencies up to 6
GHz and FR2 covers frequencies above 6 GHz, including the millimeter wave band. This example
introduces new functionality which is required to support FR2 and the process of upgrading an
existing FR1 design.

The Simulink® models described in this example are fixed-point HDL-optimized implementations of
MIB recovery for 5G NR FR1 and FR2. This example is one of a related set which show the workflow
for designing and deploying a 5G NR cell search and MIB recovery algorithm to hardware. The
complete workflow is shown.

@ adapt for hardware
simulate and
compare
deploy verified
models

Each step in this workflow is demonstrated by one or more related examples.

1 MATLAB Golden Reference Algorithm: The “NR Cell Search and MIB and SIB1 Recovery” (5G
Toolbox) example shows the floating-point golden reference algorithm.

2 MATLAB Hardware Reference Algorithm: The “NR HDL Cell Search and MIB Recovery MATLAB
Reference” on page 5-22 models hardware-friendly algorithms and generates test waveforms.
This MATLAB® code operates on vectors and matrices of floating-point data samples and does
not support HDL code generation.

NR HDL MIB Recovery for FR2

3 Simulink Fixed-Point Implementation Model: The “NR HDL Cell Search” on page 5-38 example
demonstrates a 5G cell search Simulink subsystem that uses the same algorithm as the MATLAB
reference. The “NR HDL MIB Recovery” on page 5-9 example adds a broadcast channel
decoding and MIB recovery subsystem. The NR HDL MIB Recovery for FR2 example (this
example) shows cell search and MIB recovery models which have been extended to support FR2.
These models operate on fixed-point data and are optimized for HDL code generation.

4 Simulink SoC Deployment Model: The “Deploy NR HDL Reference Applications on SoCs” on page
5-55 examples build on the fixed-point implementation models and use hardware support
packages to deploy the algorithms on hardware.

For a general description of how MATLAB and Simulink can be used together to develop deployable
models, see “Wireless Communications Design for FPGAs and ASICs”.

File Structure
This example uses these files.
Simulink models

* nrhdlMIBRecovery.slx: This Simulink model combines the processing of the SSB detector and
the SSB decoder into an integrated model illustrating the complete MIB recovery process. This
model uses the nrhd1SSBDetectionCore.slx and nrhd1SSBDecodingCore. s1x model
references.

* nrhdlSSBDecodingCore. slx: This model reference implements the SSB decoding algorithm.
* nrhdlSSBDetectionCore.slx: This model reference implements the SSB detection algorithm.

Simulink data dictionary

* nrhdlReceiverData.sldd: This Simulink data dictionary contains bus objects that define the
buses contained in the example models.

MATLAB code

* runMIBRecoveryModelFR2.m: Script for running and verifying the nrhdlMIBRecovery model
with an FR2 waveform.

* nrhdlexamples: Package containing the MATLAB reference code and utility functions for
verifying the implementation models.

SSB Detection

This section describes the changes to SSB detection in the “NR HDL Cell Search” on page 5-38
example which are required to support FR2. It details the algorithmic requirements across the
MATLAB reference and Simulink implementation, and the optimizations made for HDL code
generation.

The SSB detection algorithm performs search and demodulation with a given subcarrier spacing
(SCS). The SCS options are 15 kHz or 30 kHz for FR1 and 120 kHz or 240 kHz for FR2. To add FR2
functionality, the new SCS options must be supported. The detector searches for SSBs by
downsampling the received signal to one of the rates shown in the table according to the SCS. The
signal is then cross-correlated with the PSS sequences.

SCS (kHz) Sample Rate (MHz)

5 Reference Applications

15 3.84
30 7.68
120 30.72
240 61.44

To accommodate the increased bandwidth of the SSBs in FR2, an input sampling rate of 122.88 Msps
is used compared to 61.44 Msps for the FR1 design. The timing reference units are unchanged and
are still measured in samples at 61.44 Msps. The timing reference counters increment in steps of 16,
8, 2, and 1 for SCS of 15, 30, 120, and 240 kHz respectively. This model includes a modified DDC
design that supports these additional subcarrier spacings and their corresponding sample rates. The
DDC corrects frequency offsets and then downsamples to 61.44 MHz. The output from the DDC is the
input to the SCS selection subsystem. This subsystem creates the data streams for each SCS option
by successively downsampling with halfband filters. All four streams are aligned, allowing the timing
reference to be maintained when switching between different subcarrier spacings. The selected
stream is correlated against each of the three PSS sequences to detect SSBs.

Subcarrier
Fregquency

offset from spacing

from
controller
controller

|

Input
@12288 — f poc(4.2) 5C5240

61.44
Msps

5C5120

Msps
Frequency
correction FIR (.[-2}
and Halfband

decimation 5C5 120
Halfband

30.72
Msps

SCS30

e

5CS 30 SCS 30

Halfband 1 Halfband 2

5C815

768
Msps

5Cs15

L

384
Msps

Stream

Aligner [

and
Selector

Halfband

The FPGA implementation of these correlators in the time domain uses 576 DSPs, 4 times more than
the version which only supports FR1. This change in resources is because the sampling rates reduce
the amount of resource sharing which can be achieved in the filters. A frequency domain overlap-add
method is used to minimize the DSP usage at the expense of an increase in latency. The overlap-add
correlation in the nrhd1SSBDetectionCore model is shown. The subsystem computes the four
stages of the overlap-add method. These are FFT, multiplication by the three sets of frequency
domain coefficients (one for each PSS), IFFT, and overlap and add of subsequent windows. This
implementation uses one FFT, three complex multipiers, and three IFFTs, requiring 48 DSPs in total.

1 e
sti1e_en1a] o st1e_en1a) 31

i tv15_Enta [c) 3] - 18 En1a (c) [301] D)
Ty in st [EmS - [e
dataln oL Gptmized 1 [oooen)
& boolean it Latency = 329 g [P0 o e ;l_ boolean i D
alidin] e S validOut

o1z Enas (o) [3ha)

Multipty and IFFT overlap add

SSB Decoding

This section describes the updates required to add FR2 support to the SSB decoding algorithm. For a
complete description of the FR1 model see the “NR HDL MIB Recovery” on page 5-9 example. It
details the algorithmic requirements across the MATLAB reference and Simulink implementation.

NR HDL MIB Recovery for FR2

The SSB Decoding algorithm decodes the broadcast channel (BCH) contained in the SSB. The decode
process outputs the master information block (MIB) and the beam index of the detected SSB. In FR1,
there are a maximum of 8 SSBs which can be independently beamformed. FR2 supports transmitting
64 SSBs, each on their own beam. The contents of the BCH varies between FR1 and FR2 to
accommodate the different maximum beam count.

The nrhdlexamples.ssbDecode function and nrhd1SSBDecodingCore model accept Lmax as an
input. Lmax is the maximum number of beams that can be transmitted by a cell tower, and depends
on the carrier frequency. Valid settings for Lmax are 4 or 8 for FR1 and 64 for FR2. Lmax affects the
descrambling within the BCH processing/extract payload subsystem, and how the final BCH payload
is parsed.

The contraller
extracts v from the
beh data, vis
computed from bits
[4 23] (zero-based)
s delay by 24 as
the valid will be
continuously high

.lel I N

lboolean buffer streaming deinterlzave

datainto a frame
NR Gold Sequence | |
ufiz3 Generator

shitds] hiftldh ¥ bodiean ST Thooian (32) booiean (32) uintaz
;|—> podiean | ¥(Delays ¢ FA ¢ 2| Concat
y walid f—————» s payload

behController - S
isserantied NR Gold Sequence Generator

data| descramble

3 [pockan
bohValkid > 7 »(2

(&Y,

ufix10

validOut

bchController

NeellD

onver

MIB Recovery Simulation

Use the runMIBRecoveryModelFR2 script to run an FR2 MIB recovery simulation and verify the
results. The script displays its progress at the MATLAB command prompt. The simulation uses the
nrhdlMIBRecovery model which references the nrhd1SSBDetectionCore and
nrhd1SSBDecodingCore models. The input stimulus for the simulation is an FR2 waveform
containing an SS burst with these parameters.

* SSB pattern is case D.

* Subcarrier spacing is 120 kHz.

* NCellID is 249.

* Active SSBs are transmitted on SSB indices 24:31.

A plot is generated showing the resource grid of the burst waveform. The amplitude of each resource
element is indicated by its color. The plot shows the eight transmitted SSBs. The SSBs are generated
with different power levels to model what a UE typically receives.

The simulation searches for SSBs in the waveform using the MATLAB reference. The SSBs detected
during the search, and their parameters, are shown in a table. The SSB with the strongest PSS
correlation is selected for demodulation and decoding to test the nrhdlMIBRecovery model. The
subcarrier spacing, PSS sequence, timing offset and frequency offset estimate are passed into the
model to specify which SSB to demodulate and decode. The final results of the decoding process are
shown, with both the simulation and MATLAB reference results shown for comparison.

3-5

5 Reference Applications

runMIBRecoveryModelFR2;

Searching for SSBs using the MATLAB reference.
SSBs found by MATLAB reference:

NCellID2 timingOffset pssCorrelation pssEnergy frequencyOffset
0 1.0918e+05 0.42856 0.9903 51134
0 1.1137e+05 0.76446 1.6985 49836
0 1.1576e+05 0.27392 0.66928 48771
0 1.1795e+05 4.138 7.8159 49815
0 1.2456e+05 0.58574 1.249 51829
0 1.2675e+05 1.2834 2.7073 49390
0 1.3113e+05 0.18099 0.49988 48119
0 1.3332e+05 0.59469 1.2165 47641

Demodulating the strongest SSBs using the MATLAB reference.

Decoding the SSB using the MATLAB reference.

Successfully decoded SSB with MATLAB reference

Demodulating the strongest SSBs using Simulink model.

Running nrhdlMIBRecovery.slx

Starting serial model reference simulation build

Model reference simulation target for nrhd1SSBDecodingCore is up to date.
Model reference simulation target for nrhdlSSBDetectionCore is up to date.

Build Summary

0 of 2 models built (2 models already up to date)
Build duration: Oh Om 3.4464s
Successfully decoded SSB with Simulink model
MATLAB decoded information
pbchPayload: 218103955
ssbIndex: 27
hrf: 0
err: 0
mib: [1x1 struct]

Simulink decoded information
pbchPayload: 218103955
ssbIndex: 27

hrf:
err:
mib:

0
0
[1x1 struct]

MATLAB decoded MIB parameters

NFrame: 105

SubcarrierSpacingCommon: 120
k SSB: 0
DMRSTypeAPosition: 2
PDCCHConfigSIB1l: ©
CellBarred: 0
IntraFreqReselection: 0

Simulink decoded MIB parameters
NFrame: 105
SubcarrierSpacingCommon: 120

k SSB: 0

5-6

NR HDL MIB Recovery for FR2

DMRSTypeAPosition:
PDCCHConfigSIB1:
CellBarred:
IntraFreqReselection:

OO ON

5SS Burst - Block Pattern Case D

—1.4
200 112

11
150

Subcarrier

50

100 200 300 400 500
OFDM symbol

HDL Code Generation and Implementation Results

To generate the HDL code for this example, you must have an HDL Coder™ license. Use the makehdl
and makehdltb commands to generate HDL code and an HDL test bench for
nrhdlMIBRecovery/MIB Recovery subsystem. The resulting HDL code was synthesized for a
Xilinx® Zynq®-7000 ZC706 evaluation board. The table shows the post place and route resource
utilization results for each model reference and the combined model. The design meets timing with a
clock frequency of 200 MHz.

Resource utilization breakdown by model:

Resource nrhdlMIBRecovery nrhd1SSBDetectionCore nrhd1SSBDecodingCore
Slice Registers 64317 55969 8302
Slice LUTs 43304 32380 11138
RAMB18 40 34 6
RAMB36 10 5 5

5-7

5 Reference Applications

DSP48 207

See Also

Related Examples
. “NR HDL Cell Search” on page 5-38
. “NR HDL MIB Recovery” on page 5-9

170

37

NR HDL MIB Recovery

NR HDL MIB Recovery

This example shows how to design a 5G NR synchronization signal block (SSB) decoding and master
information block (MIB) recovery model optimized for HDL code generation and hardware
implementation.

Introduction

The Simulink® models described in this example are fixed-point HDL optimized implementations of
SSB decoding and MIB recovery for 5G NR frequency range 1 (FR1). This example is one of a related
set which show the workflow for designing and deploying a 5G NR cell search and MIB recovery
algorithm to hardware. The complete workflow is shown.

@ adapt for hardware
simulate and
compare

deploy verified
models

Each step in this workflow is demonstrated by one or more related examples.

1 MATLAB Golden Reference Algorithm: The “NR Cell Search and MIB and SIB1 Recovery” (5G
Toolbox) example shows the floating-point golden reference algorithm.

2 MATLAB Hardware Reference Algorithm: The “NR HDL Cell Search and MIB Recovery MATLAB
Reference” on page 5-22 models hardware friendly algorithms and generates test waveforms.
This MATLAB code operates on vectors and matrices of floating-point data samples and does not
support HDL code generation.

3 Simulink Fixed-Point Implementation Model: The “NR HDL Cell Search” on page 5-38 example
demonstrates a 5G cell search Simulink subsystem that uses the same algorithm as the
MATLAB® reference. The NR HDL MIB Recovery example (this example) adds a broadcast
channel decoding and MIB recovery subsystem. The “NR HDL MIB Recovery for FR2” on page 5-

5-9

5 Reference Applications

S5B

resource

grid

2 example shows cell search and MIB recovery models which have been extended to support
FR2. These models operate on fixed-point data and are optimized for HDL code generation.

4 Simulink SoC Deployment Model: The “Deploy NR HDL Reference Applications on SoCs” on page
5-55 examples build on the fixed-point implementation models and use hardware support
packages to deploy the algorithms on hardware.

For a general description of how MATLAB and Simulink can be used together to develop deployable
models, see “Wireless Communications Design for FPGAs and ASICs”.

MIB recovery requires SSB detection, demodulation, and decoding. This example focuses on SSB
decoding. SSB detection and demodulation are described in the “NR HDL Cell Search” on page 5-38
example. This example introduces the SSB decoding Simulink model and uses the MATLAB reference
to generate test input and verify the behavior of the model. Then, the example describes a Simulink
model that combines SSB detection, demodulation, and decoding to recover MIB from a baseband
waveform.

After an SSB has been detected and demodulated, it needs to be decoded to extract the MIB contents.
SSB decoding requires demodulation reference signal (DMRS) search, channel estimation and phase
equalization, and broadcast channel (BCH) decoding steps as shown in the figure below.

PBCH Decode

Channel Channel
Estimation Equalization

—me DIVIRS Search e — = Symbol Demod =g Descramble —|

5-10

L ibar_ssb

BCH Decode

Rate Recovery === Polar Decode + CRC === MIB Message Parse === MIB data

L CRC pass/fail

File Structure

This example uses these files.

Simulink models

* nrhdlSSBDecoding. s1x: This Simulink model uses the nrhd1SSBDecodingCore model

reference to simulate the behaviour of the SSB decoding part of the MIB recovery process.

* nrhdlMIBRecovery.slx: This Simulink model combines the processing of the SSB detector and
the SSB decoder into an integrated model illustrating the complete MIB recovery process. This
model uses the nrhd1SSBDetectionFR1Core and nrhd1SSBDecodingCore model references.

* nrhdlSSBDecodingCore. slx: This model reference implements the SSB decoding algorithm.
* nrhdlSSBDetectionFR1Core.slx: This model reference implements the SSB detection
algorithm.

Simulink data dictionary

NR HDL MIB Recovery

* nrhdlReceiverData.sldd: This Simulink data dictionary contains bus objects that define the

buses contained in the example models.

MATLAB code

* runMIBRecoveryModel.m: This script uses the MATLAB reference to implement the cell search
algorithm, then runs the nrhdlMIBRecovery Simulink model. The script verifies the operation of

the model using 5G toolbox and the MATLAB reference code.

* nrhdlexamples: Package containing the MATLAB reference code and utility functions for

verifying the implementation models.

NR HDL SSB Decoding

This figure shows the nrhd1SSBDecoding model. The top level of the model reads the signals from
the MATLAB base workspace, passes them to the SSB Decoding subsystem, and writes the outputs
back to the workspace. The ParseMIB subsystem takes the pbchPayload and interprets the bit fields

to produce the MIB parameter outputs.

\ NR HDL SSB Decoding |

Signals from workspace

)) [—— N . Stop the simulation once
fin.startPr g Tl prrm— = Er »|out.pbehstatus decoding is complete

i rt
in NCEIlID cellD

=in

pbchPayioad

sfn

i Common
in.Lmasx Lmax sb sh ¥
Lmax bar_ss8 sescommon

Kssh

Y

{{Lmax] Kssh

omman

Kssh

dmrsTypesPos
Ly dmrsTypeAPosition

in.dataln phchPayioad N p— sb1can
datain st o B sib1Cenfin

ibLConfig

celBarred

intraFraqResalect

validin Tt

ssbindex

ParseMIB

3 Parse the PBCH Payload to obtain
parameter values

in.restart
restart

S5B Decoding

SSB Decoding Interface

The SSB Decoding subsystem contains an instance of the nrhd1SSBDecodingCore model reference.

This section describes the inputs and outputs of that model.

5-11

5 Reference Applications

F nrhdlSSBCecodingCore h

]. Ll i —.'
| } . —— startProcessing pbchStatus p—
startProcessing pbchStatus
behStatusf———»{(2)
L2 3} B MCelll D bchSiatus
ufix10
celllD
ufix3
sshindexdlsbfp——— W
ibar_SSB
- ssbindex3lsb
L3)] Lmac
ufix2
Lmax
uint3z2
pbchPayload w4)
pbchP ayload
L4 3} | data
data sfix16_Enis (c) boolean
validout——— (" 5)
validOut
L5 3} - dlataalid hoolean
; —»
datavalid boclean nextSSE D
nextS5E
@] reset diagnostics - diagnostics
boolean
reset
A o 3
| y Log Diagnostics
55B Decoding
Inputs

» startProcessing: 1-bit control signal which indicates when all data has been written and that celllD
and Lmax are valid.

* NCellID: 10-bit unsigned number which provides cell ID number for the detected SSB.

* Lmax: 2-bit unsigned number which indicates the maximum number of SSBs in a burst. A value of
0 indicates 4 SSBs and a value of 1 indicates 8 SSBs.

* data: 16-bit signed complex-valued signal carrying the 4 OFDM symbols of the SSB.
* dataValid: 1-bit control signal to validate data.
* reset: 1-bit control signal to reset the processing.

Outputs

* pbchStatus: 2-bit unsigned value indicating the progress of the PBCH decoding operation. See
below for more information on the possible values of this signal.

5-12

NR HDL MIB Recovery

bchStatus: 3-bit unsigned value indicating the progress of the BCH decoding operation. See below
for more information on the possible values of this signal.

ssbIndex3Lsb: 3-bit unsigned value that is the 3 least significant bits of the SSB index calculated
by the DMRS search process and Lmax.

pbchPayload: 32-bit unsigned value that contains the MIB and additional PBCH rxWaveform data.
validOut: 1-bit control signal to validate ssbIndex3Lsb and pbchPayload.

nextSSB: 1-bit control signal to indicate when the core can begin processing the next SSB. Can be
used to pace inputs for back-to-back SSB decodes.

diagnostics: Bus containing diagnostic signals.

PBCH Status Signal States

0: idle

1: reading in data for SSB grid

2: performing DMRS search

3: performing PBCH symbol demodulation

BCH Status Signal States

0: idle

1: performing rate recovery

2: performing polar decoding

3: CRC error (end state)

4: CRC pass, MIB detected (end state)

SSB Decode Model Reference Structure

This diagram shows the top level of the nrhd1SSBDecodingCore model. The input data is 4 OFDM

symbols for the synchronization signal block (SSB), with the values scaled within the range +/-1. The
model starts processing when all of the SSB data has been input to the model and startProcessing is

asserted. The startProcessing signal also indicates that the NCellID and Lmax inputs are valid.

5-13

5 Reference Applications

ufixz
B e
pbchStatus

sfinls_En1S [_[_I sfix15_Enis (c) l sfix16_En1S ()
@ > >
ey e 2 Ny _. boolean @
L———J nextSSE
boolean boolean boolean)
@O— » datavalid
dataValid N ufixs L@
u
sfixl6_Enld [2x1] staius —1
softBits = #| datain benStatus
[2x1]
boolean boolean boolean boolean
@ ~l NrEmy -l N
startProcessing uinta2
peyload payload
boolean camplecon T | dataalid
nextFrameJ» nextFiame id
boolean
| SR S
mibDetect . i
(Duﬁnn ._l ufix1o Dﬂf‘oadva“d
T 1 (o
NezllD Zy | ricallin sshindexsLsh_in
z
E ufix3 .
sshindex3Lsh i booi —
T z mibErTor
= ufix2 ufinz
1 |ufiz N
Lmax 27 Lmax ncelin
»E ufixs
- e ——
o fa} ssbindex3tsh_Out sshindex3Lsb
\Diagnostics
boolean l boolean l boolean
(@D > > >
reset Lmaz
bnn\pa-y—b nextFrame]
PBCH processing CEer)
{2}
behDiagnostics
BCH processing
behbiagnostics
{2 1
diagnastics E{l
= Diagnosics Jﬂéagnnst\cs

Diagnostics Bus Creation

The PBCH processing subsystem performs DMRS search, channel estimation and equalization, QPSK
symbol demodulation, and descrambling. The output from the PBCH processing subsystem is passed
to the BCH processing subsystem which performs rate recovery, polar decoding, and CRC decoding.
The Diagnostics Bus Creation subsystem creates the diagnostics bus by concatenating the diagnostics
from the PBCH and BCH processing subsystems.

PBCH Processing Subsystem

The PBCH processing subsystem performs DMRS search, channel estimation and equalization, and
QPSK demodulation and descrambling. Incoming data is stored in a RAM buffer where it is held until
startProcessing is asserted, indicating that all required information is available to start the DMRS
search process. The DMRS search reads the DMRS symbols from the RAM and correlates with the 8
possible DMRS sequences, selecting the strongest correlation value to determine ibar SSB. Once the
DMRS search has been completed ibar SSB is used to generate the reference DMRS required for
channel estimation. The reference DMRS is passed to the channel est + eq subsystem along with the
received PBCH symbols and associated DMRS.

5-14

NR HDL MIB Recovery

0

boolean

i
poenstans|———w @I
ibchstat status

sfix16_Enis (<)
m

reset

0

1

sfixls_Enis (c)

PBCH staius

bookean sfix1s_Enia [c)
symvakd Datavalid eqoata

data

sfix1s_Enis (c)
=

0

dataValid

B

oolean

six16_En1a [2x]
s

»(2
2
o fum N — R

stantProcessing

nextFram;

@

boolean

e

ufi1o

& hest_snanie

bar_ss8
i3 channel est + eq ‘

sotBitsvaid

NeellD

nextrrame s cateu = @
stiaa_enzo (D, max = soitBits\alid
— Lmaxx create sample control
boolean
ufixs
5SB Buffer + DMRS Search (D]
ssbindex3Lsb

> boolean

demad + descramble

[221]

5
pchDragnostes Py (GBI

oiehDiagnostics

bar_ss8

_ssBvalid

Diagnostis Bus Creation

The channel est + eq subsystem performs channel estimation using the received data and the
reference DMRS. The channel estimate applies linear interpolation between DMRS locations within
an OFDM symbol, but does not average across time in case of any residual carrier frequency offset.
Phase equalization of the PBCH symbols is then performed, followed by QPSK demodulation and
descrambling, using ibar SSB and Lmax to calculate the descrambling sequence.

BCH Processing Subsystem

The BCH processing performs rate recovery, polar decoding, and CRC decoding of the BCH. The rate
recovery subsystem includes signal scaling and wordlength reduction to prepare the data for polar
decoding. The scaled, rate-recovered soft bits are then passed to the NR Polar Decoder block, which
also performs CRC decoding. The err output port from the NR Polar Decoder block indicates if
decoding was successful or encountered any errors. The extract payload subsystem performs
descrambling and deinterleaving of the payload bits.

5-15

5 Reference Applications

@ olean

reset

ufix:
st [t @D

ne
I cend> behStatus status.

0

—

NR Polar Decoder

boolean
1

boolean boolean
nextFrame Neellin boolean
valido

nextFrame

mibDetected

Lmax

u>Uz extract payload

NeelllD

w2 ufnz
vt ufix2
Lmax

BCH statu:
sfix16_En1d [2x1] sfic16_En14 [2x1] sfiné,_EnS — ~
datain dataOut] d <amplecontrol Linia2 uinisz
N E

@D
ssbindexalsb_Out

S

bt Diagnastics

U3 s Diagnostics Bus Creation
uoa Ui vt ufixs
ssbindex3Lsb_in z z

SSB Decoding Simulation Setup

The block diagram shows the simulation setup implemented by this example. 5G Toolbox™ functions
are used to generate a test waveform. MATLAB reference code for the SSB detector is then used to
search for and demodulate the strongest SSB within the waveform. This result provides test input for
the SSB decoding stage. The test data is passed to both MATLAB and Simulink implementations, and
the outputs are compared to verify the operation of the Simulink model.

MATLAB 55B
Decode
Generate test MATLAB S5B MATLAB S5B
— — Compare Results
waveform Search Demodulate Pe
Simulink S5B l I
Decode

5-16

SSB Decoding Simulation

Use the runSSBDecodingModel script to run an SSB decoding simulation. The script displays its
progress at the MATLAB command prompt. The final results of decoding the SSB in MATLAB and
Simulink are displayed, showing that they match exactly. Plots of the DMRS search correlation
strength and the equalized PBCH QPSK symbols show that the signals from MATLAB and Simulink
match closely.

runSSBDecodingModel;
Generating test waveform.

Searching for SSBs using the MATLAB reference.
Demodulating the strongest SSB using the MATLAB reference.

NR HDL MIB Recovery

Decoding the SSB using the MATLAB reference.

MIB successfully decoded by MATLAB reference
Decoding the SSB using the Simulink model.

Running nrhdl1SSBDecoding.slx

Starting serial model reference simulation build

Model reference simulation target for nrhd1SSBDecodingCore is up to date.

Build Summary

0 of 1 models built (1 models already up to date)

Build duration: Oh Om 0.62693s

MIB successfully decoded by Simulink model

MATLAB decoded information
pbchPayload: 218103952

ssbIndex: 3
hrf: 0
err: 0

mib: [1x1 struct]

Simulink decoded information

pbchPayload: 218103952

ssbIndex: 3
hrf: 0
err: 0

mib: [1x1 struct]

MATLAB decoded MIB parameters

NFrame:
SubcarrierSpacingCommon:
k SSB:
DMRSTypeAPosition:
PDCCHConfigSIB1:
CellBarred:
IntraFreqgReselection:

105
30

OO ONO

Simulink decoded MIB parameters

NFrame:
SubcarrierSpacingCommon:
k SSB:
DMRSTypeAPosition:
PDCCHConfigSIB1:
CellBarred:
IntraFreqgReselection:

105
30

OO ONO

5-17

5 Reference Applications

5-18

0.15

0.1

0.05

Correlation strength

DMRS Search Correlation

MATLAB
Simulink

ibar ssb

NR HDL MIB Recovery

01 PBCH Symbol Constellation

> MATLAB
0.08 = Simulink | 4

0.06

0.04 r

0.02 r

Quadrature

-0.02 ¢

-0.04 1

-0.06

-0.08 i 1 o 1 1 1 1 1 1
-0.08 -0.06 -0.04 -0.02 0 0.02 004 006 008 0.1

In-phase

MIB Recovery Model

The nrhdlMIBRecovery model connects the two reference models for SSB Decoding and SSB
detection (nrhd1SSBDecodingCore and nrhd1SSBDetectionFR1Core) to create a complete MIB
recovery implementation. This model can be used to recover MIB from baseband 5G waveforms. The
script runMIBRecoveryModel can be used to run this model and compare against the MATLAB
reference. To reduce the processing time required the cell search part of the algorithm is performed
in MATLAB then, once the strongest SSB has been determined, the Simulink model is used to re-
acquire, demodulate, and decode the SSB.

The status signal from the detector is used to start the SSB decoder when it has reached state 8,
indicating that demodulation is complete, SSS has been found, and the demodulated grid has been
output. When the SSB decoder has the demodulated grid and received the startProcessing signal it
will decode the SSB, outputting the PBCH payload which is then parsed to extract the MIB data.

5-19

5 Reference Applications

detectionStatus

fivca
nrhdISSEDetectionFR1Core status b _
detectionsiatus
@ —————————»{datain
sfix1a_En13 (c}
dataln ufixz
pssMCED2 f— W
pssNCelllD2
ficL
validin pssTimingOfiset| m4>®
. boolean -
wvalidin pssTimingOfiset
intaz nrhdiSSBDecodingCore
pssFrequencyCfiset———————» (@)
pssFrequencyOffset
e frequencyOffset 4b startProcessing LC)“
frequencyOfiset n pesCorrelation ufixaz_Enza @ boolean| pbchStatus.
pssCorrelation
Threshold JFi2-En24
pssThreshol
I
@ . wiez | pssThreshold behStatus @@
subcarrierSpacing NCellD behStatus
ufic10 ufixld
NCeliDf——
“ cellD
& E— [sz En2a s
ufi L ssbindex3Lsh f————
mode ficl sssCorrelation -
sssComelation sshindexilsl
@
fi32_Enz4 w2
sssThreshold Lﬁ Lmax
@) —————+|imingOfiset ssaThreshold uina
fimingOfiset vt - pochPayioad | (@IBD)
reportyalid Rn;b@ piochPayload
reportvalid sixte Ents (]
sfn16_Enis (g data
NCellD2 gridData A» -
NCellD2 ue data walidout | ()
validOut
 Jeoctean
aridvalid
(D) st Lb@ \—»dm P dataValid -
start 2 diagnostics}——»—] datavalid nextSSBf——»
SSB Detection
boolean = diagnosticsf—— »—]

HDL Code Generation and Implementation Results

SSE Decoding

To generate the HDL code for this example, you must have an HDL Coder™ license. Use the makehdl
and makehdltb commands to generate HDL code and an HDL test bench for
nrhd1SSBDecoding/SSB Decoding or nrhdlMIBRecovery/MIB Recovery subsystems. The
resulting HDL code was synthesized for a Xilinx® Zynq®-7000 ZC706 evaluation board. The table
shows the post place and route resource utilization results. The design meets timing with a clock
frequency of 150 MHz.

Resource utilization for nrthdlSSBDecoding model:

Resource Usage
Slice Registers 8297
Slice LUTs 11050
RAMB18 8
RAMB36 4
DSP48 37

Resource utilization for nthdIMIBRecovery model:

Resource

Usage

5-20

NR HDL MIB Recovery

Slice Registers 83231

Slice LUTs 40154

RAMB18 17

RAMB36 5

DSP48 245
See Also

Related Examples
. “NR HDL Cell Search” on page 5-38

5-21

5 Reference Applications

NR HDL Cell Search and MIB Recovery MATLAB Reference

5-22

This example shows how to model a 5G NR cell search and MIB recovery hardware algorithm in
MATLAB® as a step towards developing a Simulink® HDL implementation. Use this MATLAB
reference to verify the Simulink models in the “NR HDL Cell Search” on page 5-38, “NR HDL MIB
Recovery” on page 5-9, and “NR HDL MIB Recovery for FR2” on page 5-2 examples.

Introduction

The NR HDL Cell Search and MIB Recovery MATLAB Reference example bridges the gap between a
mathematical algorithm and its hardware implementation by providing a MATLAB model of the
algorithms that are implemented in hardware. The MATLAB reference is created to evaluate
hardware-friendly algorithms and generate test vectors for verifying the Simulink fixed-point HDL
optimized implementation. The workflow for designing and deploying a 5G cell search and MIB
recovery algorithm to hardware is shown.

@ adapt for hardware
simulate and
compare
deploy verified
models

Each step in this workflow is demonstrated by one or more related examples.

1 MATLAB Golden Reference Algorithm: The “NR Cell Search and MIB and SIB1 Recovery” (5G
Toolbox) example shows the floating-point golden reference algorithm.

2 MATLAB Hardware Reference Algorithm: The NR HDL Cell Search and MIB Recovery MATLAB
Reference (this example) models hardware-friendly algorithms and generates test waveforms.
This MATLAB code operates on vectors and matrices of floating-point data samples and does not
support HDL code generation.

3 Simulink Fixed-Point Implementation Model: The “NR HDL Cell Search” on page 5-38 example

demonstrates a 5G cell search Simulink subsystem that uses the same algorithm as the MATLAB

NR HDL Cell Search and MIB Recovery MATLAB Reference

reference. The “NR HDL MIB Recovery” on page 5-9 example adds a broadcast channel decoding
and MIB recovery subsystem. The “NR HDL MIB Recovery for FR2” on page 5-2 example shows
cell search and MIB recovery models which have been extended to support FR2. These models
operate on fixed-point data and are optimized for HDL code generation.

4 Simulink SoC Deployment Model: The “Deploy NR HDL Reference Applications on SoCs” on page
5-55 examples build on the fixed-point implementation models and use hardware support
packages to deploy the algorithms on hardware.

For a general description of how MATLAB and Simulink can be used together to develop deployable
models, see “Wireless Communications Design for FPGAs and ASICs”.

Cell Search and MIB Recovery Overview

A block diagram of the cell search and MIB recovery algorithm is shown. The algorithm detects,
demodulates, and decodes 5G NR synchronization signal blocks (SSBs) and is a hardware-friendly
version of the corresponding steps in the “NR Cell Search and MIB and SIB1 Recovery” (5G Toolbox)
example. At the top level, the algorithm consists of a Search Controller, an SSB Detector and an SSB
Decoder. This example explains each of these blocks in more detail and demonstrates the
corresponding MATLAB reference functions, which are used to explore algorithms for hardware
implementation and to verify the streaming fixed-point Simulink models. This example focuses on 5G
NR frequency range 1 (FR1) however the MATLAB reference code supports both FR1 and FR2. See
“NR HDL MIB Recovery for FR2” on page 5-2 for an example of how to use the MATLAB reference for
FR2.

Cell Search and MIB Recovery Algorithm

Search Controller

Ncell

Received SSB Detector - SSB Decoder MIB data
waveform

Resource
grid

Cell Search

Cell search consists of carrier frequency recovery, Primary Synchronization Signal (PSS) search,
OFDM demodulation, and Secondary Synchronization Signal (SSS) search. The Search Controller and
the SSB Detector work together to perform these processing steps. The SSB Detector performs all of
the high-speed signal processing tasks, making it well suited for FPGA or ASIC implementation. The
Search Controller coordinates the search and operates at a low rate, making it well suited for
software implementation on an embedded processor.

The algorithm starts by using the PSS to search for SSBs with subcarrier spacings of 15 kHz and 30
kHz across a range of coarse frequency offsets. The subcarrier spacing and coarse frequency offset

5-23

5 Reference Applications

search ranges are configurable. If SSBs are detected, the receiver OFDM demodulates the resource
grid of the SSB with the strongest PSS and determines its cell ID using the SSS. The residual fine
frequency offset is corrected during the OFDM demodulation phase.

Cell Search Algorithm
(nrhdlexamples.cellSearch)

Search Controller

g

55B Detector
(nrhdlexamples.sshDetect)

(2)
Nip

v

Ncell
pss o 1D
s iming

offset

Waveform
@ 61.44 Msps

OFDM
demodulation

$ Resource grid

v

* SSB Detector: Searches for and OFDM-demodulates SSBs at a given carrier frequency offset and
subcarrier spacing and measures the residual fine carrier frequency offset.

» Digital Down Converter (DDC): Performs frequency translation to correct frequency offsets in the
received waveform and then decimates the signal from 61.44 Msps to 7.68 Msps.

* PSS search: Searches for PSS symbols within the waveform.
* OFDM demodulation: OFDM-demodulates an SSB resource grid.
* SSS search: Searches for SSS and determines the overall cell ID.

» Search Controller: Coordinates the cell search by directing the SSB Detector to search for PSS
symbols at different coarse frequency offsets and subcarrier spacings and to demodulate the SSB
with the strongest PSS.

In the MATLAB reference, the nrhdlexamples.cellSearch function implements the cell search
algorithm. This function implements the Search Controller shown in the diagram, and calls the
nrhdlexamples.ssbDetect function, which implements the SSB Detector. The “NR HDL Cell
Search” on page 5-38 example shows the streaming fixed-point Simulink HDL implementation of the
SSB Detector. In the “5G NR MIB Recovery Using Analog Devices AD9361/AD9364” (Communications
Toolbox Support Package for Xilinx Zyng-Based Radio) example, the SSB Detector is implemented in
programmable logic while the Search Controller is implemented in software on the integrated
processing system.

Search Controller

The Search Controller is responsible for coordinating the overall search. The algorithm follows these
steps.

1 For each subcarrier spacing, step through each coarse frequency offset and use the SSB Detector
to search for SSBs until one or more is detected. The coarse frequency offset step size is half the

5-24

NR HDL Cell Search and MIB Recovery MATLAB Reference

subcarrier spacing. When SSBs are detected at a given frequency, record the residual fine carrier
frequency offset of the strongest SSB that is returned.

2 Move to the next coarse frequency step and search for SSBs again. If the search detects SSBs,
choose the coarse frequency offset that resulted in the smallest fine frequency offset
measurement. Otherwise, pick the last coarse frequency offset.

3 Compute the total frequency offset by adding the coarse and fine frequency offsets together.
Use the SSB Detector to correct the frequency offset and perform one more search for SSBs.

5 Pick the SSB with the strongest PSS correlation. Use the SSB Detector in demodulation mode to
find and demodulate the SSB and determine its cell ID.

SSB Detector

These diagrams show the SSB Detector structure for FR1, and the parameters and data passed to and
from the Search Controller. The SSB Detector is subdivided into two functions: SSB Detector DDC
(nrhdlexamples.ssbDetectDDC) and SSB Detection Search and Demod
(nrhdlexamples.ssbDetectSearchDemod). The DDC accepts samples at 61.44 Msps and performs
a frequency shift followed by decimation by a factor of 8 using halfband filters. The frequency offset,
in Hz, is provided by the search controller and is used by the algorithm to compensate for both coarse
and fine frequency offsets.

Fregquency
offset from
controller
55B Detector DDC for FR1
{(nrhdlexamples ssbDetectDDC)
Input Frequenc To 558 Detection
@61.48 — 1 " i s FIR(L2) s FIR(L2) » FIR(J2) —— p Searchand Demod
Msps correction — @7.68 Msps
Halfband1 Halfband?2 Halfband3 Msps

5-25

5 Reference Applications

Inputs from controller Outputs to controller
| |
I 1 I 1
Subcarrier Mode (search, demod) For each PSS found: S5 block NCelliD
spacing Timing offset (demod only) NCelliD2 resource grid "
NCelliD2 {demod only) Timing offset
Fine frequency offset k
Correlation strength
Signal energy
558 Detector for FR1
{nrhdlexamples.ssbDetectSearchDemod) |
L FIR g S
Y search

SES Halfband B
FIR (J.2) 384 (no rate change)
Halfbanda Msps
From 558 Timing

Detector DDC offset
@7.68 Msps

5C530 y

7.68
- | - > OFDM - 858
ps demeodulation search

4
¥

SSB Detection Search and Demod accepts samples at 7.68 Msps. For 30 kHz subcarrier spacing, it
uses the samples at this rate. For 15 kHz subcarrier spacing, it decimates the input by a factor of two,
operating at 3.84 Msps. SSB Detection Search and Demod has two modes of operation: search and
demodulation.

In search mode, the function searches for SSBs at the specified subcarrier spacing using the PSS, and
returns a list of those detected. For each SSB that is found, the function returns these parameters:

* NCellID2: Indicates which of the three possible PSS sequences (0,1, or 2) was detected.

* timing offset: The timing offset from the start of the waveform to the start of the SSB.

* fine frequency offset: The residual fine frequency offset in Hz measured by using the cyclic
prefixes of all four OFDM symbols in the SSB.

* correlation strength: The measured PSS correlation level.

* signal energy: The total energy in the samples in which the PSS was detected.

In demodulation mode, the function attempts to find a specific SSB by using its timing offset and
NCellID2. If the function finds the specified PSS, the receiver OFDM demodulates the SSB resource
grid and attempts to detect its SSS. In demodulation mode, the function returns these results.

* Updated parameters for only the specified SSB if the PSS is found.

* The demodulated SSB resource grid if the PSS is found.

* The cell ID if the SSS is found.

The OFDM demodulator uses a 256-point FFT to demodulate the SSB resource grid, which contains
240 active subcarriers.

5-26

NR HDL Cell Search and MIB Recovery MATLAB Reference

Timing Offsets

The cell search algorithm uses timing offsets to identify positions within the received waveform and
intermediate signals. A timing offset is the number of samples from the start of the waveform to a
given position, such as the start of an SSB. Timing offsets are given in samples at 61.44 Msps and
wrap around every 20 ms, or 1228800 samples. In 5G NR, UEs can assume that the SS burst
periodicity is 20 ms or less for cell search purposes, hence the reason for this choice of timing
reference periodicity.

The figure shows two 5G waveforms with different SS burst periodicities (5 ms and 20 ms) and the
receiver timing reference. The MATLAB reference can detect SSBs at any position within the received
waveform. However, if the waveform is longer than 20 ms, ambiguity in the returned timing offsets
exists because the timing reference wraps around every 20 ms. Additionally, the receiver can
demodulate only SSBs that begin within the first 20 ms of the waveform.

55 bursts with 5ms periodicity

Cell search timing reference

1228799

20ms Time

SSB Decoding

The diagram shows the structure of the SSB decoder, which is implemented by the
nrhdlexamples.ssbDecode function. The algorithm takes the SSB resource grid from the OFDM
demodulation phase of the SSB detector, processes it through PBCH and BCH decoding, and outputs
MIB parameters and PBCH timing information.

5-27

5 Reference Applications

558 PBCH Decode
resource
grid Channel Channel
—fp- DMRS Search s .annf-z a.nm? = Symbol Demod =i Descramble
Estimation Equalization \
L ibar_ssb
BCH Decode

5-28

Rate Recovery === Polar Decode + CRC == MIB Message Parse =g MIB data

L CRC pass/fail

PBCH decoding takes the demodulated OFDM symbols of the resource grid and processes using
these steps:

* DMRS Search: Searches for the index used for demodulation reference symbol (DMRS)
generation.

* Channel Estimation: Calculates an estimate of the channel using the DMRS.

* Channel Equalization: Equalizes the received data using the channel estimate.

* Symbol Demod: Performs QPSK demodulation to get the PBCH soft bits.

* Descramble: Descrambles the soft bits.

BCH Decode then processes the descrambled soft bits to recover the MIB data using these steps:

* Rate Recovery: Combines repeated soft bits then performs scaling and quantization.

* Polar Decode + CRC: Performs polar decoding to get the message bits and CRC decoding to check
for errors.

* MIB Message Parse: Interprets the decoded message bits to produce the MIB parameter outputs.
Generate a Test Waveform
This section shows how to use the MATLAB reference functions to search for SSBs in a waveform.

Use the nrhdlexamples.generateFR1SSBurstWaveform function to generate an SS burst
waveform. This function is based on the “Synchronization Signal Blocks and Bursts” (5G Toolbox)
example. The burst has these parameters.

* SSB pattern is case B.

* Subcarrier spacing is 30 kHz.

* NCellID is 249.

* Active SSBs within the burst is 8.

rng('default');
[rxWaveform,txGrid,txMIB] = nrhdlexamples.generateFR1SSBurstWaveform();

Plot the resource grid of the burst waveform. The amplitude of each resource element is indicated by
its color. The plot shows eight SSBs. The SSBs are generated with different power levels to model
what a UE typically receives.

NR HDL Cell Search and MIB Recovery MATLAB Reference

figure(l); clf;

imagesc(abs(txGrid));

colorbar;

axis xy;

xlabel('OFDM symbol');
ylabel('Subcarrier');

title('SS Burst - Block Pattern Case B');

SS Burst - Block Pattern Case B

114

200

150

Subcarrier

=
[
[

50

20 40 60 80 100 120 140
OFDM symbol

Detect SSBs

Use the nrhdlexamples. ssbDetect function to find SSBs in the waveform by searching for PSS
symbols. This example calls the function with a coarse carrier frequency offset estimate of zero and a
subcarrier spacing of 30. The function corrects the coarse frequency offset and measures the residual
fine frequency offset of each SSB. Frequency offset input and output are give in Hz. The function
returns a list of detected PSS symbols as a structure array. Display the structure array contents by
converting it to a table.

FoCoarse = 0;
scs = 30;
[pssList,diagnostics] = nrhdlexamples.ssbDetect(rxWaveform, FoCoarse,scs);

disp(struct2table(pssList));

NCellID2 timingOffset pssCorrelation pssEnergy frequencyOffset

0 6608 0.69435 0.70703 7

5-29

5 Reference Applications

0 15376 1.3933 1.4119 -51
0 32944 0.43994 0.44712 -207
0 41712 7.1226 7.2182 -154
0 68048 0.84535 0.88463 204
0 76816 2.1805 2.245 140
0 94384 0.2794 0.28375 488
0 1.0315e+05 0.8552 0.89668 132

The nrhdlexamples.ssbDetect function also returns a structure containing diagnostic signals.
Use this output to plot the PSS correlation results. Each peak in the correlator output shown
corresponds to an entry in the PSS list.

figure(2); clf;
nrhdlexamples.plotUtils.PSSCorrelation(diagnostics, 'PSS Correlation');

P55 Correlation

8 . ;
PSSO
7L . ——P551 1
P552
Threshold
E - -
c 2 1
o
=
L
TRGAE T
=
o
U -
2 3 4 5
Time [s] %1073

Use the nrhdlexamples.ssbDetect function to OFDM-demodulate one of the SSBs and attempt
SSS detection. For this operation, call the function with an optional 4th argument that specifies the
timing offset and NCellID2 of the desired SSB. This example chooses the PSS with the highest
correlation metric, however you can choose any of the detected SSBs. Correct the frequency offset by
passing in the sum of the coarse and fine frequency offset estimates.

[~,maxCorrIdx] = max(vertcat(pssList.pssCorrelation));
chosenPSS = pssList(maxCorrIdx);

FoFine = chosenPSS. frequencyOffset;

FoEst = FoCoarse + FoFine;

5-30

NR HDL Cell Search and MIB Recovery MATLAB Reference

[ssBlockInfo,ssGrid,diagnostics] = nrhdlexamples.ssbDetect(rxWaveform,FoEst,scs,chosenPSS);

In demodulation mode, the function returns three outputs instead of two. The ssBlockInfo
structure contains further details of the SSB, such as the SSS correlation strength and the overall cell
ID. The ssGrid output is a matrix containing the demodulated OFDM symbols. Display the SSB info
to confirm that the cell ID is correctly decoded.

disp(ssBlockInfo);

NCellID2: 0O
timing0ffset: 41712
pssCorrelation: 7.1219
pssEnergy: 7.2185
NCellID1l: 83
sssCorrelation: 7.1383
sssEnergy: 7.1743
NCellID: 249
frequencyOffset: 0

Display the resulting resource grid.

figure(3); clf;
imagesc(abs(ssGrid));
colorbar;

axis xy;

xlabel('OFDM symbol');
ylabel('Subcarrier');
title('Rx Resource Grid');

5-31

5 Reference Applications

Rx Resource Grid

200

150

Subcarrier

=
=
=

50

0.5 1 1.5 2 2.5 3 3.5 4
OFDM symbol

The diagnostics output includes SSS correlation results for all 336 possible sequences. Plot the
SSS correlation results.

figure(4); clf;
nrhdlexamples.plotUtils.SSSCorrelation(diagnostics, 'SSS Correlation')

5-32

NR HDL Cell Search and MIB Recovery MATLAB Reference

SS5S Correlation

Correlation
Threshold

Correlation
=Y

0 s L N A AP PP AP PN ARN U
0 50 100 150 200 250 300 350

NCelllD1

Search for Cells

This section shows how to use the nrhdlexamples.cellSearch function to search for and
demodulate SSBs when the frequency offset and subcarrier spacing are not known. As described
previously, the nrhdlexamples. cellSearch function builds on the nrhdlexamples.ssbDetect
function by adding a search controller that looks for SSBs at different subcarrier spacings and
frequency offsets.

Apply a frequency offset to test the coarse and fine frequency recovery functionality.

Fo = 10000;
t = (0:length(rxWaveform)-1).'/61.44e6;
rxWaveformFo = rxWaveform .* exp(li*2*pi*Fo*t);

Define the frequency range endpoints and subcarrier spacing search space and call the
nrhdlexamples. cellSearch function. The function displays information on the search progress as
it runs. The frequency range endpoints must be multiples of half the maximum subcarrier spacing.

frequencyRange = [-30 301];
subcarrierSpacings = [15 30];

[ssBlockInfo,ssGrid] = nrhdlexamples.cellSearch(rxWaveformFo, frequencyRange,subcarrierSpacings,s
'DisplayPlots', false, ...
'DisplayCommandWindowOutput', true));

Searching for PSS (subcarrierSpacing: 15 kHz, frequencyOffset: -30 kHz)
Searching for PSS (subcarrierSpacing: 15 kHz, frequencyOffset: -22.5 kHz)

5-33

5 Reference Applications

5-34

Searching
Searching
Searching
Searching
Searching
Searching
Searching
Searching
Searching
Searching
Searching
Found PSS

PSS
PSS
PSS
PSS
PSS
PSS
PSS
PSS
PSS
PSS
PSS

for
for
for
for
for
for
for
for
for
for
for

(
(
(
(
(
(
(
(
(
(

subcarrierSpacing:
subcarrierSpacing:
subcarrierSpacing:
subcarrierSpacing:
subcarrierSpacing:
subcarrierSpacing:
subcarrierSpacing:
subcarrierSpacing:
subcarrierSpacing:
subcarrierSpacing:
(subcarrierSpacing:

15 kHz,
15 kHz,
15 kHz,
15 kHz,
15 kHz,
15 kHz,
15 kHz,
30 kHz,
30 kHz,
30 kHz,
30 kHz,

frequencyOffset:
frequencyOffset:
frequencyOffset:
frequencyOffset:
frequencyOffset:
frequencyOffset:
frequencyOffset:
frequencyOffset:
frequencyOffset:
frequencyOffset:
frequencyOffset:

-15 kHz)
-7.5 kHz)
0 kHz)
7.5 kHz)
15 kHz)
22.5 kHz)
30 kHz)
-30 kHz)
-15 kHz)
0 kHz)

15 kHz)

. PSS detected.
. PSS detected.

with (subcarrierSpacing: 30 kHz, frequencyOffsetEstimate: 9846 Hz)
Correcting frequency offset and searching for PSS again.
Found the following PSS symbols:

NCellID2 timing0ffset pssCorrelation pssEnergy frequencyOffset
0 6608 0.69422 0.70705 161
0 15376 1.3933 1.412 103
0 32944 0.43981 0.44714 -53
0 41712 7.1219 7.2185 0
0 68048 0.84567 0.88466 358
0 76816 2.1812 2.2451 294
0 94384 0.2793 0.28376 642
0 1.0315e+05 0.85524 0.89673 286
Strongest PSS:
NCellID2: 0O
timingOffset: 41712
pssCorrelation: 7.1219
pssEnergy: 7.2185

frequencyOffset: 0

Cell search summary:
Subcarrier spacing:

Frequency offset:
Timing offset:
NCellID:

0
41712
7.1219
7.2185
83
7.1383
7.1743
249
9846
30

30 kHz
9846 Hz
41712
249

Attempting to reacquire strongest PSS and demodulate the corresponding SS block.
NCellID2:
timingOffset:
pssCorrelation:
pssEnergy:
NCellID1:
sssCorrelation:
sssEnergy:
NCellID:
frequencyOffset:
subcarrierSpacing:

As shown in the summary, the receiver returned the correct subcarrier spacing of 30 kHz, a cell ID of
249, and the measured frequency offset is close to the expected value of 10 kHz.

NR HDL Cell Search and MIB Recovery MATLAB Reference

Decode SSB

Use the nrhdlexamples. ssbDecode function to decode the resource grid and recover the MIB. The
nrhdlexamples.ssbDecode function is based on the BCH decoding stages of the “NR Cell Search
and MIB and SIB1 Recovery” (5G Toolbox) example.

[mibInfo,decodeDiags] = nrhdlexamples.ssbDecode(ssGrid,ssBlockInfo.NCelllID,8);

Plot the correlation peaks for the DMRS search. DMRS search is performed to determine ibar ssb
and the SSB index.

figure(5); clf;
plot(0:7,decodeDiags.dmrsCorr);
title('DMRS Search Correlation');
xlabel('ibar ssb');
ylabel('Correlation strength');

018 DMRS Search Correlation

0.16

= = =
o 2 - -
o2 — [] =Y

Correlation strength
=
o
[}

ibar ssb

Plot the PBCH QPSK constellation after phase equalization.

figure(6); clf;
plot(decodeDiags.qgpskSymb, '0');
title('PBCH Symbol Constellation');
xlabel('In-phase');
ylabel('Quadrature');

5-35

5 Reference Applications

01 PBCH Symbol Constellation

0.08

0.06

0.04

0.02

Quadrature
o
[}
P [}
T T T

|

2

=

=t
T

-0.06 |

-0.08

0.1 ' ' '
0.1 0.05 0 0.05 0.1

In-phase

Display the decoded information and compare the transmitted and received MIB structures. These
results show that the information was successfully decoded.

disp(['BCH CRC: ' num2str(mibInfo.err) newlinel]);

disp('Decoded information');
disp(mibInfo);

disp('Decoded MIB');
disp(mibInfo.mib);

disp('Expected MIB');
disp(txMIB);

BCH CRC: 0O

Decoded information
pbchPayload: 218103952
ssbIndex: 3
hrf: 0
err: 0
mib: [1x1 struct]
Decoded MIB
NFrame: 105
SubcarrierSpacingCommon: 30
k SSB: 0
DMRSTypeAPosition: 2

5-36

NR HDL Cell Search and MIB Recovery MATLAB Reference

PDCCHConfigSIB1:
CellBarred:
IntraFreqReselection:

Expected MIB

NFrame:
SubcarrierSpacingCommon:
k SSB:
DMRSTypeAPosition:
PDCCHConfigSIB1:
CellBarred:
IntraFreqReselection:

See Also

Related Examples

[ocNoNo)

105

OO ONO W
(o)

. “NR HDL Cell Search” on page 5-38
. “NR HDL MIB Recovery” on page 5-9

5-37

5 Reference Applications

NR HDL Cell Search

This example shows the design of a 5G NR cell search subsystem optimized for HDL code generation
and hardware implementation.

Introduction
The Simulink® model described in this example is an HDL-optimized implementation of a
synchronization signal block (SSB) detector for 5G NR frequency range 1 (FR1). This example is one

of a related set which show the workflow for designing and deploying a 5G NR cell search and MIB
recovery algorithm to hardware. The complete workflow is shown.

@ adapt for hardware
simulate and
compare

deploy verified
models

Each step in this workflow is demonstrated by one or more related examples.

1 MATLAB Golden Reference Algorithm: The “NR Cell Search and MIB and SIB1 Recovery” (5G
Toolbox) example shows the floating-point golden reference algorithm.

2 MATLAB Hardware Reference Algorithm: The “NR HDL Cell Search and MIB Recovery MATLAB
Reference” on page 5-22 models hardware-friendly algorithms and generates test waveforms.
This MATLAB® code operates on vectors and matrices of floating-point data samples and does
not support HDL code generation.

3 Simulink Fixed-Point Implementation Model: The NR HDL Cell Search example (this example)
demonstrates a 5G cell search Simulink subsystem that uses the same algorithm as the MATLAB
reference. The “NR HDL MIB Recovery” on page 5-9 example adds a broadcast channel decoding
and MIB recovery subsystem. The “NR HDL MIB Recovery for FR2” on page 5-2 example shows

5-38

NR HDL Cell Search

cell search and MIB recovery models which have been extended to support FR2. These models
operate on fixed-point data and are optimized for HDL code generation.

4 Simulink SoC Deployment Model: The “Deploy NR HDL Reference Applications on SoCs” on page
5-55 examples build on the fixed-point implementation models and use hardware support
packages to deploy the algorithms on hardware.

For a general description of how MATLAB and Simulink can be used together to develop deployable
models, see “Wireless Communications Design for FPGAs and ASICs”.

A block diagram of the SSB detector is shown in the figure. The detector performs all of the high-
speed signal processing tasks associated with the cell search algorithm therefore is well suited for
FPGA or ASIC implementation. The SSB detector searches for SSBs in time at a given frequency
offset and subcarrier spacing. It is designed to be used as part of a larger system that implements
carrier frequency offset recovery and subcarrier spacing detection. A controller must be used co-
ordinate the overall cell search as shown in the “5G NR MIB Recovery Using Analog Devices AD9361/
AD9364” (Communications Toolbox Support Package for Xilinx Zyng-Based Radio) example.

The SSB detector performs primary synchronization sequence (PSS) search, orthogonal frequency
division multiplexing (OFDM) demodulation, and secondary synchronization sequence (SSS) search.
It also includes a digital down converter (DDC) for correcting frequency offsets in the received signal.
The SSB detector has two modes of operation, search and demodulation, which are demonstrated in
this example. In search mode, the detector searches for SSBs and returns their parameters. In
demodulation mode, the detector recovers a specified SSB OFDM-demodulates its resource grid and
searches for SSS within the appropriate resource elements.

To/from search controller

g

SSB Detector

(2)
Nip

'y
>

v

Ncell
555 1D
search

Waveform L
@ 61.44 Msps search Timing

=

$ Resource grid

demodulation

File Structure
The example uses these files.
Simulink models

* nrhdlSSBDetection.slx: This Simulink model uses the nrhd1SSBDetectionFR1Core model
reference to simulate the behaviour of the SSB decoding part of the MIB recovery process.

* nrhdlSSBDetectionFR1Core. slx: This model reference implements the SSB detection
algorithm.

Simulink data dictionary

5-39

5 Reference Applications

* nrhdlReceiverData.sldd: This Simulink data dictionary contains bus objects that define the
buses contained in the example models.

MATLAB code

* runSSBDetectionModelSearch.m: Script for running and verifying the nrhd1SSBDetection
model in search mode.

* runSSBDetectionModelDemod.m: Script for running and verifying the nrhd1SSBDetection
model in demodulation mode.

* nrhdlexamples: Package containing the MATLAB reference code and utility functions for
verifying the implementation models.

NR HDL Cell Search Model

This figure shows the nrhd1SSBDetection model. The top level of the model reads signals from the
MATLAB base workspace, passes them to the SSB Detection subsystem, and writes the outputs back
to the workspace. Use the runSSBDetectionModelSearch and runSSBDetectionModelDemod
scripts to run the model and post-process the outputs.

| NR HDL SSB Detection |

Signals to workspace

status 4>| out.status |
status

Dz =J| out.blockNCelllD2 |

Signals from workspace

in.dataln | datain
dataln

invalidin - = validin .
walidin ingCifsat - »> out.pssTimingOffset |
pssTimingCffset |

pesFrequencyOffset .
W out.pssFrequencyOffset |

=J| out.pssCorrelation |

¥

in.frequencyOffset
q y0 frequencyOffzet

pssCorrelation

subcarrierSpacing out.pssThreshold |

pssThreshald

out.NCelllD |
MCeliD

in.mode

out.sssCorrelation |

intimingCfset —
timingofiset out.sssThreshold |
sssThreshold

out.reportValid |

in.NCellD2

nCelinz

out.gridData |

in.start

start

L

out.gridvalid |

S5E Detection

5-40

NR HDL Cell Search

SSB Detection Interface

The SSB Detection subsystem contains a Model block that references the

nrhd1SSBDetectionFR1Core model. This section describes the inputs and outputs of that model.

L1} #] dataln
shixld Eni3 (c)
dataln -
L2} —validin
validin R
L3} —p frequencyOffset
int32
frequencyOifset
4 % - subcamierSpacing
subcarrierSpacing Hihe
L5} —»] mode
uficl
made
[—p timingOffset
-, uficZ L
timingOffset
L7} . MCelllD2
NCellD2 e
L6 } # start
DN
start

Inputs

dataln: 14-bit signed complex-valued signal, sampled at 61.44 Msps.

nrhdlSSEDetectionFR1Core

status

pssMNCellD2

pssTimingOffset

pssFrequencyOfiset

pssCorrelation

pssThreshold

NCellD

sssCorrelation

sss Threshold

reporivalid

gridDiata

gridValid

diagnostics

ufixd

ufixz

» 1)

status

ufi2 1

» 2)

pssNCellD2

mi32

> 3)

pssTimingOfiset

ufix3z_Enz4

(D)

pasFrequencyOffset

ufix32_Enz4

> 5)

pssCorrelation

ufixl0

» 6)

pssThreshold

ufix32_En24

an)

NCellD

ufix3z_Enz4

» B)

sssCorrelation

boolean

()

555 Threshold

> 10

sfx1d_Enis o)

reportalid

{11

boolean

grid Data

> 12)

gridValid

S5B Detection

validIn: 1-bit control signal to validate dataln.

| diagnostics

Diagnostics to workspace

frequencyOffset: 32-bit signed value specifying the frequency offset to be corrected. This signal is
connected to an NCO with a 32-bit accumulator. Use this equation to convert the value to Hz:
frequencyOffset Hz = frequencyOffset * 61.44e6 [27 32.

subcarrierSpacing: 2-bit unsigned value specifying the subcarrier spacing. Set this signal to 0 to
select 15kHz, or 1 to select 30kHz.

mode: 1-bit unsigned value specifying the operation mode. Set this signal to 0 for search mode, or
1 for demod mode.

5-41

5 Reference Applications

5-42

timingOffset: 21-bit unsigned value specifying the timing offset of the start of the SSB to be
demodulated. Specify the timing offset in samples at 61.44 Msps, from 0 to 1228799. This
parameter applies only for demod mode.

NCellID2: 2-bit unsigned value specifying the PSS (0, 1, or 2) of the SSB to be demodulated. This
parameter applies only for demod mode.

start: 1-bit control signal used to start a search or demodulation operation. To start an operation,
set frequencyOffset, subcarrierSpacing, mode, timingOffset, and NCellID2 to the desired values
and set start to 1 (true) for one or more cycles. If an operation is already in progress, that
operation is canceled when start is set to 1 (true). The new operation begins when start is
returned to 0 (false).

Outputs

status: 4-bit unsigned value that indicates the progress of the current operation. See the next
section for the possible values of this signal.

pssNCellID2: 2-bit unsigned value that is the PSS (0, 1 or 2) of the detected SSB.

pssTimingOffset: 21-bit unsigned value that is the timing offset of the detected SSB. The timing
offset is in samples at 61.44 Msp from 0 to 1228799.

pssFrequencyOffset: 32-bit signed value that is the frequency offset of the detected SSB. This
signal has the same units as the frequencyOffset input.

pssCorrelation: 32-bit unsigned value that is the strength of the PSS correlation.
pssThreshold: 32-bit unsigned value that is the threshold value when PSS was detected.

NCellID: 10-bit unsigned value that is the cell ID of the demodulated SSB. This value is returned
only in demod mode.

sssCorrelation: 32-bit unsigned value that is the SSS correlation strength. This signal is returned
only in demod mode.

sssThreshold: 32-bit unsigned value that is the SSS threshold. This value is returned only in
demod mode.

reportValid: 1-bit control signal. In search mode, this signal validates pssNCellID2,
pssTimingOffset, pssFrequencyOffset, pssCorrelation, and pssThreshold for each PSS that is
detected. In demod mode, this signal also validates NCellID, sssCorrelation, and sssThreshold. In
demod mode, sssCorrelation and sssThreshold are only valid if the specified SSB was found using
its PSS, and NCellID is only valid if the SSS was detected.

gridData: 16-bit signed complex-values that are the resource grid data. The receiver returns all
four symbols of the SSB resource grid. Values are returned one resource element at a time. The
resource grid is only returned in demod mode.

gridValid: 1-bit control signal that validates the gridData output. Data is only returned if the
specified SSB was found using its PSS. This signal is returned only in demod mode.

diagnostics: Bus containing diagnostic signals.

Status Signal States

0 Idle -- Initial state. Waiting for first start pulse.

1 Search mode -- Searching for PSS.

2 Search mode -- Operation complete, no PSS found.

3 Search mode -- Operation complete, found one or more PSSs.
4 Demod mode -- Waiting for specified PSS timing offset.

NR HDL Cell Search

* 5 Demod mode -- Operation complete, PSS not found.

* 6 Demod mode -- Found specified PSS. Demodulating the resource grid and looking for SSS.
* 7 Demod mode -- Operation complete, no SSS found. Returned demodulated resource grid.
* 8 Demod mode -- Operation complete, found SSS. Returned demodulated resource grid.

SSB Detection Model Reference Structure

This diagram shows the top level of the nrhd1SSBDetectionFR1Core model. The input signal
(dataln) is 14-bit signed complex-valued data sampled at 61.44 Msps. The Input Scaling subsystem
increases the word length to 16 bits by sign-extending the values by one bit and adding one LSB. This
increase provides headroom and extra accuracy for subsequent processing stages. The DDC corrects
the frequency offset and decimates the samples by eight (to 7.68 Msps) by using halfband filters. The
output of the DDC is the input to the SSB Search and Demod subsystem. The Detection Status block
keeps track of progress and generates the status output.

Deteciion Siatus

sy [
[I
—_
tar L
chor) a)) e)) _ s s
[e®' z 7 P R ENN
perrs =5 [locksta o
e =LC] e
_
bosiaa ccies o
(& = =
& el \ -
- ociea
iz a2
D=2 - H
G = Input Scaiing pssiiCeilDz
requencyOfiset 55 e e o
Fo . pssTimingofiset
e /e rr e
iz
[encyOfs
beanierspacing
ez e sz enas
= D)
Frequency Correction and DDC -
™ = uicsz e Bl cro: >
made] pssThieshold
a ociea e
=7 @ a
T gl repor z D)
—He z E] E] [reportvaid
ezt
CO—— convertTimingoftset uicio
= D
Gt
timingOfset)
ez Bl cro:)
-] ssCarhton
NCellD2 sz o D)
[sssThieshold
s ensie) Pl ese oy
5] gridata
=]
ocican e ™
5] gridVaid
bociean ociean ocican ©
(@D veur = >(TT)
e — [Clagnosics

558 Search and Demad

SSB Search and Demod Subsystem Structure

The SSB Search and Demod subsystem performs SSB detection and demodulation. Its internal
sampling rate varies depending on the subcarrier spacing (SCS). The subsystem uses 7.68 Msps for
30kHz SCS and 3.84 Msps for 15kHz SCS. The subcarrier spacing selection logic on the left is
responsible for changing the sampling rate. The rate can change only when a new operation is
triggered by the start input.

The receiver has an internal timing reference system that keeps track of time by using counters at
key points in the datapath. The timing reference counts 20ms periods - the assumed SSB periodicity
for cell search as defined by the 5G NR standard. Time is measured in samples at 61.44 Msps modulo
1228800 to create the 20ms period. Since the actual sampling rate is either 7.84 Msps or 3.84 Msps,

5-43

5 Reference Applications

the timing reference counters increment by either 8 or 16, respectively, for each sample. When a new
operation is triggered by the start input, the Start Controller records the start time and passes the
time to the other timing references in the model. This signal tells the other timing references when a
new subcarrier spacing and corresponding sampling rate applies. The other timing references wait
until the start time before changing their increment. This design is possible only because hardware
latency means the other timing references lag behind the Start Controller. This architecture enables
the receiver to keep track of time consistently, even when a sampling rate change occurs.

Diagnostics Bus Creation

aaaaaaaa

Cyclic Prefix Correlation CP Correlation to Frequency PSS and CP Alignment PSS Info Serialization

Gy rf Conmasen

Subcarrier Spacing
Selection PSS Detection

==

OFDM Data
Synchronization

=

OFDM D

$SS Detection

The SSB Search and Demod subsystem contains these main subsystems.

* Subcarrier Spacing Selection: Converts the input to two synchronized sample streams, one at 7.68
Msps and one at 3.84 Msps, and selects which stream to pass to subsequent processing stages
according to the subcarrier spacing.

* PSS Detection: Searches for PSS symbols in the received signal. The next section describes this
subsystem in more detail.

* Cyclic Prefix Correlation: Computes cyclic prefix (CP) correlation values. Each result is averaged
across the last four OFDM symbols.

* CP Correlation to Frequency: Converts CP correlation values to fine frequency offset estimates.

* PSS and CP Alignment: Matches a CP-based frequency estimate with each PSS symbol detection
instance. This alignment is necessary because the frequency estimate for a given PSS detection
instance is available only at the end of the corresponding SSB.

* PSS Info Serialization: If PSS is detected on more than one PSS correlator output at the same
timing offset, this block serializes the results so that they are returned from the detector one at a
time.

5-44

NR HDL Cell Search

* OFDM Data Synchronization: Synchronizes the OFDM demodulator input with the output of the
PSS detector. This synchronization enables the PSS detector to trigger the OFDM demodulation
process at the correct time. The synchronized data is one OFDM symbol behind the PSS correlator
as the peak detection occurs at the end of the first OFDM symbol to be demodulated.

* OFDM Demodulation: OFDM-demodulates "the four symbols of the specified SSB.

* SSS Detection: Extracts the SSS resource elements from the OFDM demodulator output and
correlates them with all 336 possible sequences to determine the cell ID.

* Create report: Aligns all of the parameters corresponding to one SSB detection, so that they are
all valid at the same time.

Simulation Setup

The block diagram shows the simulation setup of this example, which is implemented in the
runSSBDetectionModelSearch and runSSBDetectionModelDemod scripts. 5G Toolbox™
functions are used to generate a test waveform which is applied to the MATLAB and Simulink
implementations of the SSB detector in search mode and then in demodulation mode. Key diagnostic
signals from each detector are compared in terms of their relative mean-squared error (MSE) and the
final outputs are compared. Finally, the resource grid output of the Simulink model is decoded to
show that the MIB contents are as expected.

MATLAB hardware
algorithm reference

Compare diagnostic
signals

Generate test
waveform

Verify output

Simulink HDL parameters
implementation and measure EVM

Search Mode Simulation

Use the runSSBDetectionModelSearch script to run a search mode simulation and verify the
results. In search mode, the SSB detector searches for SSBs and returns their parameters. The script
displays its progress in the MATLAB command window. Tables show the parameters of each SSB
detected by MATLAB and Simulink. The final table shows the relative MSE between MATLAB and
Simulink for each correlator output and for the detection threshold. Plots are generated showing (i)
the combined resource grid of all eight SSBs in the transmitted waveform and (ii) the PSS correlation
outputs and threshold. The results show that the MATLAB and Simulink implementations match very
closely. The small differences between the two implementations are due to quantization errors. These
errors occur because the MATLAB reference uses floating-point data types, and the Simulink model
uses fixed-point data types.

runSSBDetectionModelSearch;

Generating test waveform.
SSB pattern: case B

5-45

5 Reference Applications

Subcarrier spacing: 30
NCellID: 249
Number of active SSBs: 8
Frequency offset: 10 kHz

Searching for SSBs using the MATLAB reference.
Searching for SSBs using the Simulink model.
Running nrhd1SSBDetection.slx
Starting serial model reference simulation build
Model reference simulation target for nrhdlSSBDetectionFR1Core is up to date.

Build Summary

0 of 1 models built (1 models already up to date)
Build duration: ©0h Om 1.8465s

SSBs found by MATLAB reference:

5-46

NCellID2 timingOffset pssCorrelation pssEnergy frequencyOffset
0 6608 0.43616 0.77013 9837
0 15376 0.94287 1.4364 9941
0 32944 0.25739 0.50089 9627
0 41712 4.4661 6.8109 9885
0 68048 0.57172 0.92271 10292
0 76816 1.4557 2.2044 10075
0 94384 0.1859 0.41544 10318
0 1.0315e+05 0.58464 0.93384 10076

SSBs found by Simulink model:

NCellID2 timingOffset pssCorrelation pssEnergy frequencyOffset
0 6608 0.4361 0.77034 9837
0 15376 0.94326 1.4367 9941
0 32944 0.25759 0.50106 9628
0 41712 4.4667 6.812 9885
0 68048 0.57174 0.92296 10292
0 76816 1.4563 2.2049 10075
0 94384 0.186 0.4156 10318
0 1.0315e+05 0.58468 0.93403 10076

Relative mean-squared error

between MATLAB and Simulink in search mode:

relativeMSEdB
{'PSS correlation 0'} -66.863
{'PSS correlation 1'} -61.77
{'PSS correlation 2'} -61.542
{'PSS threshold' } -76.821

NR HDL Cell Search

SS Burst - Block Pattern Case B

14

200 112

150

Subcarrier

—t
=
=

50

20 40 60 80 100 120 140
OFDM symbol

5-47

5 Reference Applications

5-48

MATLAB: Search Mode PSS Correlation

5
1 —+— PS50
ST PSs1 1
= pss2
T Threshold | 7
o
=]
]
2 3 4 5
Time [s] <1072
: Simulink: Search Mode PSS Correlation
1 —— PS50
24T PSS1 1
= pss2
T Threshold | 7
o
=]
]
2 3 4 5
Time [s] <1072

Use the Simulink Logic Analyzer to view the inputs and outputs to the SSB Detection subsystem. The
detector looks for PSS symbols within a 20 ms time window, which begins after a pulse on the start
input triggers the search operation. If no PSS symbols are found after 20 ms, the detector sets the
status output to 2 - indicating that the search has failed. In this example, the detector finds all eight
SSBs. The status output is set to 1 during the search, and a report is returned for each SSB by
asserting the reportValid signal. The simulation only runs for 5 ms however if it is extended to run for
more than 20 ms, then the status output is eventually set to 3 - indicating that the search has
succeeded.

NR HDL Cell Search

E3 nrhdiCellSearch - Logic Analyzer - O X

LOGIC ANALYZER TRIGGER

Cursor 1 4102 us

Demodulation Mode Simulation

After running runSSBDetectionModelSearch, use the runSSBDetectionModelDemod script to
run a demodulation mode simulation and verify the results. In demodulation mode, the detector
recovers the specified SSB by searching for its PSS, OFDM-demodulating the resource grid, and
searching for the SSS within the appropriate resource elements. The script displays its progress in
the MATLAB command window. SS block reports from MATLAB and Simulink show that both
detectors returned similar parameters and determined the cell ID correctly as 249. Relative MSE
measurements indicate that the MATLAB and Simulink implementations match very closely. As a final
verification step, the script decodes the broadcast channel (BCH) from the Simulink resource grid
output. The CRC check passes and the master information block (MIB) contents match the
transmission. Plots are generated which show the PSS and SSS correlation results, and the resource
grid output. The PSS correlation levels are stronger in the demodulation mode simulation than in
search mode simulation because the frequency offset is corrected.

runSSBDetectionModelDemod;

Choosing the strongest PSS from the previous search and computing its frequency offset.
Strongest PSS index (1 based): 4
Frequency offset (coarse + fine): 9.885 kHz
Demodulating the strongest SSBs using the MATLAB reference.
Demodulating the strongest SSBs using the Simulink model.
Running nrhdlSSBDetection.slx
Starting serial model reference simulation build
Model reference simulation target for nrhdlSSBDetectionFR1Core is up to date.

Build Summary

0 of 1 models built (1 models already up to date)
Build duration: Oh Om 0.42526s

SS block report from MATLAB
NCellID2: ©

5-49

5 Reference Applications

timingOffset: 41712
pssCorrelation: 6.5920
pssEnergy: 6.7946
NCellID1l: 83
sssCorrelation: 6.6760
sssEnergy: 6.8410
NCellID: 249

frequencyOffset: -1

SS block report from
NCellID2: ©

timingOffset: 41712
pssCorrelation: 6.5940
pssEnergy: 6.7974

NCellID1l: 83
sssCorrelation: 6.6766
sssEnergy: 6.8432

NCellID: 249

frequencyOffset: -1

Relative mean-squared error between MATLAB and Simulink in demod mode:

Simulink

name relativeMSEdB
{'PSS correlation 0'} -66.962
{'PSS threshold' } -69.199
{'SSS correlation' } -68.706
{'Rx resource grid' } -69.822

Decoding BCH from Simulink resource grid output:

BCH CRC: 0
Decoded (Rx) MIB
NFrame:
SubcarrierSpacingCommon:
k SSB:
DMRSTypeAPosition:
PDCCHConfigSIB1:
CellBarred:
IntraFreqgReselection:
Expected (Tx) MIB
NFrame:
SubcarrierSpacingCommon:
k SSB:
DMRSTypeAPosition:
PDCCHConfigSIB1:
CellBarred:
IntraFreqReselection:

5-50

105

OO ONO W
(o)

30

OO ONO

NR HDL Cell Search

Correlation

Correlation

MATLAB: Demod Mode PSS Correlation

Threshaold

Time [s] <1072
Simulink: Demod Mode PSS Correlation

—— P550
—— P551 A
p552

Threshaold

Time [s] <1072

5-51

5 Reference Applications

5-52

Correlation

Correlation

MATLARB: S55 Correlation

Correlation
Threshold |
50 100 150 200 250 300 350
NCelllD1
Simulink: S55S Correlation
Correlation
Threshold |
50 100 150 200 250 300 350

MCelllD1

NR HDL Cell Search

MATLAB: Rx Resource Grid

200
£ 150
G
o 100
3
w
50
0.5 1 15 2 25 3 35 4 4.5
OFDOM symbol
Simulink: Rx Resource Grid
200
£ 150
G
o 100
=
W
50
0.5 1 15 2 25 3 35 4 45
OFDOM symbol

Use the Simulink Logic Analyzer to view the detector output as it progresses through these steps.

1

The detector sets the status output to 4 while it waits for the specified timing offset and searches
for the specified PSS.

PSS is found. The detector sets the status output to 6 - the detector is now searching for the SSS
within the resource grid. The four demodulated OFDM symbols are output, indicated by asserting
gridValid.

After the SSS is determined, the detector asserts reportValid to indicate that all of the PSS and
SSS parameters, including NCellID, are valid. The status output changes to 8, to indicate that the
operation is complete and SSS and cell ID are ready.

If the PSS is not found at the specified timing offset, the detector sets the status output to 5 and stops
searching. If the detector is unable to determine the SSS, then it sets the status output to 7. In this
example, the detector recovers the specified SSB - the SSB with the strongest PSS from the initial
search.

5-53

5 Reference Applications

4 nrhdiCellSearch - Logic Analyzer

LOGIC ANALYZER TRIGGER

Jaff+3ad9i
1
1

1} G
L1

Cursor 1

HDL Code Generation and Implementation Results

To generate the HDL code for this example, you must have an HDL Coder™ license. Use the makehdl
and makehdltb commands to generate HDL code and an HDL test bench for the
nrhd1SSBDetection/SSB Detection subsystem. The resulting HDL code was synthesized for a
Xilinx® Zynq®-7000 ZC706 evaluation board. The table shows the post place and route resource
utilization results. The design meets timing with a clock frequency of 230 MHz.

Resource Usage

Slice Registers 74934

Slice LUTs 29104

RAMB18 9

RAMB36 1

DSP48 208
See Also

Related Examples
. “NR HDL Cell Search and MIB Recovery MATLAB Reference” on page 5-22

5-54

Deploy NR HDL Reference Applications on SoCs

Deploy NR HDL Reference Applications on SoCs

These examples show how to implement 5G NR HDL cell search and MIB recovery on Xilinx-based
platforms with hardware-software co-design and hardware support packages.

The workflow for designing and deploying a 5G NR cell search and MIB recovery algorithm to
hardware is shown.

1. MATLAB Golden Reference Algorithm

@ adapt for hardware

2. MATLAB Hardware Reference Algorithm

simulate and
compare

3. Simulink Fixed-Point Implementation Model

deploy verified
models

4. Simulink SoC Deployment Model

There are two examples which demonstrate the final step in the workflow.

* “5G NR MIB Recovery Using Analog Devices AD9361/AD9364” (Communications Toolbox Support
Package for Xilinx Zynq-Based Radio)

* “5G NR MIB Recovery Using Xilinx RFSoC Device” (SoC Blockset Support Package for Xilinx
Devices)

Both examples use hardware-software co-design modeling techniques to implement the cell search
and MIB recovery algorithm shown in the diagram. They reuse the Simulink models presented in the
“NR HDL Cell Search” on page 5-38 and “NR HDL MIB Recovery” on page 5-9 examples to generate
HDL for the FPGA logic. They then add all of the software modeling and interfacing required to
implement the algorithm in real-time on hardware.

5-55

5 Reference Applications

5-56

Cell Search and MIB Recovery Algorithm

cell
NID
Received
SSB Detector SSB Decoder MIB data
waveform
Resource
grid

For a more detailed description of the algorithm see the “NR HDL Cell Search and MIB Recovery
MATLAB Reference” on page 5-22 example. For a general description of how MATLAB and Simulink
can be used together to develop deployable models, see “Wireless Communications Design for FPGAs
and ASICs”.

LTE HDL Cell Search

LTE HDL Cell Search

This example shows how to design an LTE cell search and selection system optimized for HDL code
generation and hardware implementation.

Introduction

Cell search and selection is the first step taken by User Equipment (UE) in attempting to gain access
to an LTE network. The cell search and selection procedure involves detecting candidate eNodeB
signals and then selecting one to synchronize to. This includes determining the chosen eNodeB's
physical layer cell identity (cell ID) and duplex mode. Additionally, the UE acquires frequency and
timing synchronization during this process. Once this procedure has been completed, the UE can
demodulate the OFDM signal transmitted by the cell and recover its Master Information Block (MIB).
A MIB Recovery model with HDL code generation capability, which reuses the cell search and
selection functionality shown here, is presented in the “LTE HDL MIB Recovery” on page 5-92.

The functionality in the present example is based on the cell search functionality of the LTE Toolbox
“Cell Search, MIB and SIB1 Recovery” (LTE Toolbox). However, the algorithms have been optimized
for HDL code generation. LTE Toolbox was used extensively in the development of the present
example. The HDL model described here performs the following functions:

* Frequency recovery
* Primary and secondary synchronization signal detection
* OFDM demodulation

The frequency recovery algorithm within the HDL model can only correct offsets fewer than
+-7.5kHz. Large frequency offset recovery greater than +-7.5kHz is possible by driving the input and
monitoring the outputs with an external controller. A demonstration of large frequency offset
correction can be found in the “LTE MIB Recovery and Cell Scanner Using Analog Devices AD9361/
AD9364” (Communications Toolbox Support Package for Xilinx Zyng-Based Radio) example.

Once the model has completed the cell search and selection procedure, it outputs the cell ID, duplex
mode and unequalized resource grid of the cell. This functionality is shown below. The model
supports downlink signals with 15 kHz subcarrier spacing and normal cyclic prefix length. Frequency
Division Duplex (FDD) and Time Division Duplex (TDD) modes are both supported. The duplex mode
is automatically detected.

) —

« CellID
I/Q data Recovery Detection Demod + Resource Grid
@30.72 Msps

5-57

5 Reference Applications

Receiver input
@ 30.72 Msps

5-58

The LTE standard provides two physical signals to aid the cell search process. These are the Primary
Synchronization Signal (PSS) and the Secondary Synchronization Signal (SSS). Refer to Appendix A
for more information on LTE downlink synchronization signals.

Example Structure
The model consists of 5 files:

* 1ltehdlCellSearch.slx: This is the top level of the model, and acts as a test bench for
1tehd1DownlinkSyncDemod. s1x.

* ltehdlDownlinkSyncDemod.s1x: Model reference which implements the cell search,
synchronization, and OFDM demodulation functionality.

* ltehdlCellSearch init.m: MATLAB® script for generating stimulus.

* ltehdlCellSearch analyze.m: MATLAB script for analyzing output and displaying plots at the
end of the simulation.

+ ltehdlCellSearchTools.m: MATLAB class containing helper methods for analyzing and
plotting results.

Note: LtehdlDownlinkSyncDemod.s1x does not appear in the example working folder as it is
shared with other examples. The file is on the MATLAB path and can be opened by entering
1tehd1DownlinkSyncDemod at the MATLAB command line.

Model Architecture

The structure of the cell search and selection subsystem is shown below. The input is complex 16-bit
data sampled at 30.72 Msps. The signal is passed to two signal processing data paths; one at 1.92
Msps and one at 30.72 Msps. Frequency recovery and PSS detection are performed on the 1.92 Msps
data path. This sampling rate is used for two reasons. First, the cell bandwidth is not known at this
stage therefore the smallest LTE bandwidth of 1.4 MHz is assumed for frequency recovery. This
approach works irrespective of the actual cell bandwidth. Second, the PSS and SSS only occupy the
six central resource blocks (1.4 MHz). Therefore, detection can be performed effectively at 1.92 Msps
and resource sharing techniques can be used to optimize the hardware implementation.

P55

detection |

Determine cell D+
_ Frequency timi imni d »

—» D I > [iming timing an >
ownsampling correction cell I Duplex Mode

555 I

detection

1.92Msps

timing
Frequency
estimation

30.72Msps

Frequency R OFDM symbol FFT Resource
correction " extraction 2048-pt grid data

The following steps describe the receiver operation.

1 The frequency estimation block estimates the frequency offset over a 10 ms period.

LTE HDL Cell Search

2 The frequency correction blocks are then activated on both the 1.92 Msps and 30.72 Msps
sample streams.

3 PSS detection begins immediately after the frequency estimation stage has been completed.

SSS detection begins when PSS detection detects a valid PSS signal. If a valid SSS is found, this
means that a valid cell has been detected and the duplex mode is now known.

The cell ID and frame start position are computed.

On the next frame boundary, the receiver starts to extract OFDM symbols from the 30.72 Msps
sample stream. Each symbol is passed through a 2048-point FFT to perform OFDM
demodulation.

Appendix B provides more details of the cell search and selection algorithm used in this example.

Cell Search Simulink Model

The top level of 1Ttehd1lCellSearch.slx is shown below. This model references
1tehd1lDownlinkSyncDemod.s1lx. ltehdlCellSearch init.mis called by the InitFcn callback
and ltehdlCellSearch analyze.mis called by the StopFcn callback. The model uses a Stop sink
to terminate the simulation when either (i) the subframeNum output is 5 or (ii) cellSearchDone is
asserted true and no cell is detected. HDL code can be generated for the Cell Search HDL
subsystem.

dataln

true

stariin

| cellDatected
| LTE HDL Cell Search)
P cellSearchDone stop 4“‘*9”
| subframeNum
Stop Condition
S —
NCalliD L i
doubls (c) st Enis| TDOMode |25] I
» convert . TODMOde L »[out e
timingOffset L [out
P %| o doue —_____]
freqEst L// T_p out.
To Hz
pose 1. g —— 1
validin cellDatected T_.. out.
bockan ———
cellSearchDone T_. out.cel e
s ——]
subframeNum T_p out.si meMum
boolean
> sfw16_En5 {c)
start rdDatm » out.gridData |

boolean
gridValid

Cell Search HOL

The Cell Search HDL subsystem is primarily a wrapper for the ltehdlDownlinkSyncDemod model.
It contains a Model block (Downlink Sync Demod) which references
1tehd1lDownlinkSyncDemod.slx, and a Diagnostics To Workspace subsystem, which logs all of

5-59

5 Reference Applications

the diagnostic outputs. The diagnostic outputs are used by 1tehd1CellSearch analyze.mto
generate plots showing the internal operation.

ltehdIDownlinkSyncDemod
ufix®
.
NCalliD 0 »(1)
NCelD
sfix1G_En15 (c} boolean
1 — P datal TDDMod » 2
D datain Sfin16_En15 (c) " ode TODMode 2
dataln TODMede
ufix10
timingOfiset *{ 3
ImingetEe timingCffsat . D
timing2fiset
sfini4
freqEst * 4
reqes freqEst D
freqEst
boolesn
cellDetectad P w— 5)
boolean cellDetected
(2} "] validin
- validin boolean boolean
validin cellSearchDone P ——— 6)
cellSearchDona
ufixd
.
subframeium P S—r— » T)
subframeMum
sfix1G_En15 (c}
idDat — » B
2R gridData D
gridData
boolean
(Eb:u:-lean pliar AR aridvalid g &P
start boolean i i
start gridvalid
diagnostics
o diagnastics|
% diagnostics.
Downlink Sync Demod i

Diagnostics To Workspace

Downlink Synchronization and Demodulation Model Reference

The ItehdlDownlinkSyncDemod model reference implements all of the cell search, synchronization
and OFDM demodulation functionality. Appendix B details the cell search and selection algorithm
implemented by this model. The top level of ltehdlDownlinkSyncDemod closely matches the
architecture which was presented earlier.

Model Inputs:

* dataln: Complex signed 16-bit data carrying the baseband input signal.

* validIn: Boolean, indicating whether dataln is valid.

» start: Boolean. Assert this input true for one cycle at any time to initiate a cell search. This is
referred to as a start command.

Model Outputs:

e NCellID: 9-bit cell ID of the detected eNodeB.

* TDDMode: Boolean, indicating the duplex mode of the detected cell: false for FDD, true for
TDD.

+ timingOffset: 19-bit timing offset. Indicates the number of samples from the first sample to enter
the receiver to the first sample of the first full frame, from 0 to 307199.

* freqEst: 14-bit signed frequency offset estimate. Multiply this output by 15e3 / 214 in order to
convert to Hz as shown in the LTEHDLCellSearch model.

5-60

LTE HDL Cell Search

» cellDetected: Boolean, indicating that a cell has been found.

» cellSearchDone: Boolean, indicating that the cell search has completed. If a cell is found,
cellDetected and cellSearchDone will be asserted true at the same time. If no cell is found,
cellDetected will remain false and cellSearchDone will be asserted true within 100 ms of the
start command being issued. The time taken for cellSearchDone to be asserted depends on how
many attempts are taken to detect PSS and SSS. See Appendix B for more details.

* subframeNum: 4-bit unsigned integer. Indicates which subframe is currently being passed out of
the gridData port, from 0 to 9.

» gridData: 16-bit data carrying the demodulated resource grid.
» gridValid: Boolean, indicating whether gridData is valid.
* diagnostics: Bus signal, carrying various diagnostic outputs.

ltehdlDownlinkSyncDemod uses two Wireless HDL Toolbox™ example functions during
initialization: 1tehd1DefineReceiverBuses and ltehdlDownlinkSyncDemodConstants.
ltehd1lDefineReceiverBuses is shared with other Wireless HDL Toolbox examples, and defines a
set of Simulink buses. This function is called in the InitFcn of ltehdlDownlinkSyncDemod. Only
the detectorDiagnosticsBus output of the function is used here. The bus object is stored in the
Base Workspace, making it available to both the ltehdlDownlinkSyncDemod and ItehdlCellSearch
models.

[~,~,~,~,detectorDiagnosticsBus] = ltehdlDefineReceiverBuses();

The model relies on precomputed constants and lookup tables stored in a structure called
cellDetectorConfig. This structure is generated by the 1tehdlDownlinkSyncDemodConstants
function and is only used inside the ltehdlDownlinkSyncDemod model reference. Therefore, it is
defined in the Model Workspace rather than the Base Workspace. Use the Model Explorer to view the
Model Workspace, which contains the following initialization code.

cellDetectorConfig = ltehdlDownlinkSyncDemodConstants(30.72e6);

The internal structure of ltehdlDownlinkSyncDemod is shown.

5-61

5 Reference Applications

sfix1d_Ent3 (c)

The Decimation Filters subsystem resamples the input data from 30.72 Msps to 1.92 Msps. It
consists of CIC decimation, CIC gain compensation, CIC droop compensation, and transient removal.
The filter chain is designed to have a group delay which is equal to an integer number of samples at
1.92 Msps. The Transient Removal block removes the initial transient due to this group delay from
the sample stream. This is important because the frame timing offset is measured on the 1.92 Msps
stream and then used to recover timing on the 30.72 Msps stream. Removing the initial transient
from the decimation filter chain simplifies the logic which transfers the timing information.

Extra delay, to make overall
fiter chain delay up to a multiple

af 16.
Yo [saxieEnis e
T = i

n

sfix8_En15 (c}
dataout

sfix1B_En15 (<) sfix1B_En15 (c} sfix15_Ent5 (c}

5-62

CIC Filter CIC Gain Comp CIC Campensation Decimator

(ercrnec]

The FrequencyEstimation subsystem uses the cyclic prefix to estimate the frequency offset of the
incoming signal. Every 960 samples, the AngleAtMaximum subsystem selects the strongest
correlation peak and records its phase angle. The AngleFilter subsystem implements an averaging
filter with a window duration of 10 ms. The resulting phase angle serves as a frequency estimate.

Appendix B provides more information on how the cyclic prefix can be used to estimate the frequency
offset.

six2s_En2a ot P ix ’
$fx24_End (c) t ! angleCu rgie anglatui i _ >

2 N B_freqEstData
corrOut [el freqEst

datain

siixi4_Ent4
angleOut angsl

book boo
nnnnn i SlotValidOut

© - slotvalidOut

L. . .
validin validOut | validin olean boolean | bocean

bor
validout il fidOut i 0!

> 2
th_freqEsiDatavabd B

freqEstvalid

CyclicPrafixCarralatar Rect2Polar AngleAtMaximum

AngleFilter

The Sync Signal Search subsystem implements PSS and SSS detection. Timing is crucial in this part
of the design, because the SSS Searcher uses the frame timing information from the PSS Searcher
to identify SSS search locations. The PSS Searcher provides a validOut signal which is used by the
Stream Synchronizer block to delay the input stream and compensate for the PSS Searcher

pipeline latency. Synchronizing the input stream to the PSS Searcher outputs simplifies the design of
the SSS Searcher.

LTE HDL Cell Search

e
.
Do B e
o
P S
e

The PSS Searcher is made up of two subsystems: the Correlators and the Max Peak Searcher.
Together, these subsystems implement the PSS search algorithm described in Appendix B.

@
daain
ts
oo
it
oo
@
st
uxts
strrine
Fe |)
B
t_PSSComelation :
sfix16_EntS (c)
datain
dataln
ufna0_En24

th_PSSThreshald

boolean

validlin
oolean

th_PSEVasd

boolean

stant
start

15

start
stanTime

baolean [th_PSSDg

-

ftected

PSS Diagnostics Bus Creatar

timingOffset

ufn1s
un
fimingOffsatL N
Tb_tmingOfisstLang
Uiz
NCaaD2f—
U3l En24

h_NCelliD2 -

- NGelllD2

dana

success

walidOut

5-63

5 Reference Applications

The Correlators subsystem contains a matched filter for each of the three PSS sequences, and a set
of subsystems for determining the threshold. A lower limit is applied to the threshold to prevent small
signals triggering false alarms. The PSS correlators and the threshold generation logic have different
pipeline delays, therefore, a stream synchronizer is used to re-align their outputs.

s s) [l e b [
@ S > 2
[g 5
- -
alidOul]
@ = — : = - *@
vabin =5 : = St
- o)
,,,,,,,,, o
,,,,,,,,, e
« 1
nnnnnnn
uuuuuu @D
¢ opeedmleess . 4
o ||| sreamseonier
bodlean bodlean bodlean o [poctean . o (@)

Once a cell search is underway, the SSS Searcher continually stores samples in a circular buffer.
Once PSS is detected, it continues to load samples into the buffer until the SSS search location has
been reached and stored. The SSS search location is computed from the PSS timing information
provided by the PSSEndTimingOffset signal. Next, the FDD location samples are read from the
buffer, passed through a 128-point FFT, and the Max Likelihood SSS subsystem computes the
correlation metrics and threshold. The same operation is then applied to the TDD location samples.
The Max Likelihood SSS subsystem chooses the maximum correlation metric which exceeded the
threshold and determines the duplex mode and frame timing. Finally, the frame timing offset is
computed.

5-64

LTE HDL Cell Search

= .
e 2 B -
;T“} = [
e sy) [B
oo] ! vl
- = b D

.
R

Initialization and Analysis Scripts
Initialization Script

ltehdlCellSearch init.mis called in the InitFcn callback of L1tehdlCellSearch.slx.
Stimulus can either be loaded from a file containing a captured off-the-air waveform, or generated
with LTE Toolbox.

)
©

ltehdlCellSearch model initialization script
% Generates workspace variables needed by the ltehdlCellSearch model.

30.72e6;
1/SamplingRate;

SamplingRate
simParams.Ts

% Choose to load a captured off-the-air waveform from a file,
% or generate a test waveform with LTE Toolbox.
loadfromfile = true;

if loadfromfile
% Load captured off-the-air waveform.
load('eNodeBWaveform.mat');
dataln = resample(rxWaveform,SamplingRate, fs);
else
% Generate a test waveform with LTE Toolbox.
dataln = hGenerateDLRXWaveform();
end

% Scale signal level to be in the range -1 to +1.
dataln = 0.95 * dataln / max(abs(dataln));

% Start 1 subframe into the waveform (chosen arbitrarily).
startIn = false(length(dataIn),1);

5-65

5 Reference Applications

5-66

startIn(le-3*SamplingRate) = true;

% Configure PSS and SSS attempts
PSSAttempts 2;
SSSAttempts 4;

% Determine stop time.
simParams.stopTime = (length(dataIn)-1)/SamplingRate;

Analysis Script

ltehdlCellSearch _analyze.mis called in the StopFcn callback of LTtehdlCellSearch.slx.
This script relies heavily on 1tehdlCellSearchTools.m to analyze the model output and display
the plots.

ltehdlCellSearch model analysis script
Post-processes model outputs and generates plots.

% Check if any simulation output exists to analyze.

if exist('out','var') && ~isempty(out.PSSDetected)

% Post-process the model output to extract key cell parameters,
diganostics and signals.

[signals, report] = ltehdlCellSearchTools.processOutput(dataIn,startIn,out);
% Plot results

ltehdlCellSearchTools.figure('Input waveform and search stages'); clf;
ltehdlCellSearchTools.plotSearchStates(signals, report);

ltehdlCellSearchTools.figure('Frequency estimation'); clf;
ltehdlCellSearchTools.plotFrequencyEstimate(signals, report);

ltehdlCellSearchTools.figure('PSS search'); clf;
ltehdlCellSearchTools.plotPSSCorrelation(signals, report);

ltehdlCellSearchTools.figure('SSS search');
ltehdlCellSearchTools.plotSSSCorrelation(signals, report);

end

Analysis Tools Class

This class contains helper functions for analyzing and plotting model output. Refer to
ltehdlCellSearchTools.m for more information.

Simulation Output and Analysis

To execute the simulation, use the run button in the ltehdlCellSearch model. Simulink will
automatically call ltehdlCellSearch_init and ltehdlCellSearch_analyze via the InitFcn and
StopFcn callbacks respectively. Note that it will take a while to build the
ItehdlDownlinkSyncDemod model reference on the first run. The simulation generates two main
types of output: (i) Display blocks at the top level of the ltehdlCellSearch block diagram show key
detection parameters, and (ii) four plots are generated at the end of the simulation.

LTE HDL Cell Search

The NCellID, TDDMode, timingOffset, freqEst, cellDetected, and cellSearchDone outputs all have
associated Display blocks. Their values are shown below at the end of a simulation which used the
captured off-the-air waveform (eNodeBWaveform.mat) as stimulus.

wufixg
NCelliD

NCellD

boolean
TDDMODE

TOOMode

ufixle

——
timingCfisat

i1 _J\K\ double
! fraqEst " I/

boolean
cellDetectad

boolean

cellSearchDone

ufixd

subframeium

sfinld_Enls (c)

gridData

boolean
gridvalid

|| ibbkik

The Input waveform and search stages plot shows:

* The magnitude of the input waveform vs time.
e The time window during which frequency estimation occurs.
* The PSS search window for each attempt (one in this case) and the location of the detected PSS.

* The SSS search windows for TDD and FDD for each attempt (one in this case), and the location of
the detected SSS.

5-67

5 Reference Applications

5-68

Input waveform and search stages

1.4 F T T T T T T T T T -
| magnitude of received signal
1.2 -
Frequency Pss 555
1~ estimation search search T
'
T osl PSS SsS]
=1 . . .
= location location
2
= 0.6
0.4
0.2

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
time [s]

The Frequency estimation plot shows the output of the frequency estimator vs time. At the end of
the 10 ms frequency estimation time window, the frequency estimate is loaded into a register and
used to correct the frequency offset. This value is also shown on the plot. In this case the frequency
offset is just below 500 Hz, which is well within the -7.5 kHz to +7.5 kHz operating range of the
frequency recovery algorithm.

Frequency estimation

700 T T T T T T T T T
— frequency offset estimate
—— frequency offset estimate used for correction
600 - B
] » W H |
- L
= W
sy
— 400 - B
=
w
=
5
5 300 B
o
=
200 - B
100 B
0 | | | | | | | | |
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
time [s]

The cell ID is made up of two components, NCel1ID1 and NCell1ID2, where NCellID1 is the SSS
sequence number, and NCel1ID?2 is the PSS sequence number (See Appendix A). The PSS search
plot shows all three PSS correlator outputs, and the PSS threshold. PSS was detected approximately
17 ms into the waveform on PSS #1, therefore NCellID2 = 1.

LTE HDL Cell Search

PSS search
1.2 T T T T T T T T T
PSSO
PSS Sg%
r detected Threshold ||
- 0.8 -
>
v
S
= 0.6 -
iy
£
o
v 0.4 a
0.2 -
0" MMJ'M” L R W.W '
0 I-'-lili '-".'n'l |'-'r|!i|r|\|1lll11|rr \‘IJJJ‘JI] Tl'lllh' |'Ir||'-|u|r-:|~||| Ir'r'u"l'.\'t‘u||l|||||-'r'nau‘ |-Ir|\‘ll'iiu'|~ ll'lll \llllﬂ
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

time [s]

The SSS search plot shows the correlation metrics for the successful SSS detection attempt, and the
SSS threshold. As previously discussed, the SSS detection algorithm determines the duplex mode and
half frame position, as well as the cell ID. As a result, 4*168 = 672 correlation metrics are computed
during each attempt. The correlation metrics are shown in the following order along the x-axis:

* FDD1: metrics at the FDD location for SSS sequences corresponding to 1st half frame
* FDD2: metrics at the FDD location for SSS sequences corresponding to 2st half frame

« TDD1: metrics at the TDD location for SSS sequences corresponding to 1st half frame
» TDD2: metrics at the TDD location for SSS sequences corresponding to 2st half frame

SSS was detected in the FDD location for SSS sequence corresponding to the 1st half frame. The SSS
sequence number is 25 therefore NCel1ID1 = 25. The final cell ID is therefore:

NCellID = 3*NCellID1 + NCellID2 = 76.

w1073 SSS search
7 T T T T T T
& correlation
threshold
6 = —

correlation level

1L “J i
. i . .

0 100 200 300 400 500 600 700
SSS Seqg# [FDD1 FDD2 TDD1 TDD2]

5-69

5 Reference Applications

5-70

HDL Code Generation and Verification

To generate the HDL code for this example you must have an HDL Coder™ license. Use the makehdl
and makehdltb commands to generate HDL code and an HDL testbench for the Cell Search HDL
subsystem. Note that testbench generation can take a while due to the length of the tests vectors that
are generated.

The Cell Search HDL subsystem was synthesized on a Xilinx® Zynq®-7000 ZC706 evaluation board.
The post place and route resource utilization results are shown in the table below. The design met
timing with a clock frequency of 200 MHz.

Resource Usage

Slice Registers 44658

Slice LUTs 20271
RAMB18 25
RAMB36 11
DSP48 110

Appendix A - LTE Downlink Synchronization Signals

LTE provides two physical signals to aid the cell search and synchronization process. These are the
Primary Synchronization Signal (PSS) and the Secondary Synchronization Signal (SSS).

The cell ID of the eNodeB is encoded in the PSS and SSS. The duplex mode, cyclic prefix length, and
frame timing can be determined from their positions within the received signal. The PSS and SSS are
transmitted twice every frame. There are 3 possible PSS sequences, and the eNodeB transmits the
same PSS every half frame. For each PSS, there are 168 possible SSS sequences in the first half of
the frame and 168 different possible SSS sequences in the second half of the frame. This means that
once a SSS has been detected, the receiver knows if it is in the first or second half of a frame. The
PSS and SSS sequences depend on the cell ID, therefore, there are 3 * 168 = 504 possible cell IDs.
The cell ID is

NCellID = 3*NCellID1 + NCellID2

where NCellID2 is the PSS sequence number from 0 to 2, and NCellID1 is the SSS sequence number
from 0 to 167. Each instance of the PSS occupies the central 62 subcarriers of one OFDM symbol, as
does each instance of the SSS. For normal cyclic prefix mode the locations of the PSS and SSS signals
are follows:

* FDD Mode: PSS is in symbol 6 of subframe 0, SSS is in symbol 5 of subframe 0
* TDD Mode: PSS is in symbol 2 of subframe 1, SSS is in symbol 13 of subframe 0

There are 14 symbols in each subframe, numbered from 0 to 13. Therefore, in FDD mode, the PSS is
transmitted one OFDM symbol after the SSS, whereas in TDD mode the PSS is transmitted three
OFDM symbols after the SSS. This difference in relative timing allows the receiver to discriminate
between the two duplex modes. The positions of PSS and SSS within radio frames in FDD and TDD
mode are illustrated below.

LTE HDL Cell Search

FDD

TDD

[] sSs/PSS

+—— 1 radio frame (10ms) —»

0 m Il Il

0l 0l 0l 0l

—=time

For more details see “Synchronization Signals (PSS and SSS)” (LTE Toolbox).
Appendix B - Cell Search and Selection Algorithm

This section describes the algorithm used by the model to detect eNodeB signals. The algorithm is
designed to cope with real world conditions such as frequency offsets, noise and interference, and
variation in the SNR of the PSS and SSS over time. To detect eNodeB in the presence of such
conditions, the example uses three techniques:

Frequency recovery is applied prior to PSS and SSS detection.

Dynamic thresholds are used to validate the PSS and SSS correlation metrics and minimize the
probability of false alarm.

3 Multiple attempts are made to detect the PSS and SSS; for example, if none of the correlation
metrics for a specific instance of the SSS exceed the threshold, the detector will wait half a frame
and try again, up to a predefined number of attempts.

Frequency Recovery

Frequency recovery is performed by utilizing the time domain structure of the received signal. In LTE
(as with other OFDM based systems), each symbol consists of a useful part and a Cyclic Prefix (CP).
The CP is generated by copying a small slice from the end of the symbol and prepending it to the
start of the symbol. This can be exploited in a receiver by multiplying the received signal with the
complex conjugate of a delayed version of itself, and then integrating across the CP duration, where
the delay is the duration of the useful part. In effect, the received signal is cross-correlated with a
delayed version of itself. The magnitude of the integrator output has peaks at symbol boundaries. The
phase angle of the signal at these peaks is related to the frequency offset. This approach is used in
the present example, and combined with additional averaging, to estimate the frequency offset. The
algorithm can detect frequency offsets from -7.5 kHz to +7.5 kHz.

PSS Detection

PSS detection is performed by continuously cross-correlating the received signal with all three
possible PSS sequences in the time domain. In addition, the energy of the signal within the span of
the correlators is computed on each time step and then scaled to generate a threshold. The PSS
detection algorithm aims to pick the strongest cell by picking the maximum PSS correlation metric
within a 10 ms time window. The following pseudocode describes the search algorithm:

5-71

5 Reference Applications

5-72

initialize position of first 10 ms search window
for k =1 to 4 (number of PSS attempts)

find correlation levels which exceed the threshold

if any correlation levels exceed the threshold
find the max correlation level of those which exceed the threshold
PSS detected: break loop and start SSS search

else
PSS not detected: move search window to next 10ms period

end

end

SSS Detection

Once PSS is located, the detector can narrow down the position of the SSS to two possible locations;
one for FDD and one for TDD. The SSS correlation metrics are computed in the frequency domain, by
evaluating the dot product of the sequence. The following algorithm is used to search for and select
an SSS sequence.

initialize SSS search window
for k = 1 to 8 (number of SSS attempts)

for each duplex mode in [FDD, TDD]
extract 128 point search window for current duplex mode
compute FFT and extract SSS subcarriers
compute correlation metrics for SSS sequences corresponding to 1st half frame
compute correlation metrics for SSS sequences corresponding to 2nd half frame
compute signal energy-based threshold

end

discard correlation metrics which do not exceed the threshold
if any metrics exceeded the threshold

pick maximum correlation metric from surviving metrics

SSS detected: break loop and proceed to next processing stage
else

SSS not detected: move SSS search window later by half a frame
end

end
Cell Search Illustration

The cell search algorithm is shown below for a scenario where PSS and SSS each take 2 attempts to
detect valid signals. The figure also shows the frequency recovery stage. Initially, the receiver has no
knowledge of the received signal frame timing. In the Simulink model (and on hardware), a start
input is used to trigger the detection process. The receiver begins by measuring the frequency offset,
which takes 10 ms. Next, the first 10 ms PSS search takes place. In this case, no PSS is detected,
therefore a second PSS search is initiated. This time PSS is detected. The first SSS search takes place
just short of 10 ms after the location of the detected PSS, avoiding the need to buffer significant
amounts of data, and making the algorithm hardware friendly. As shown, SSS also takes two attempts
in this case. From the location of the detected SSS, the receiver knows the duplex model (FDD in this
case) and the frame timing.

LTE HDL Cell Search

[l sss/PSS

558 588
start time frequency PSS search 1 PSS search 2 search 1 search 2 start OFDM
¢ recovery (fail) (pass) (fail) (pass) demodulation
received
signal m] I o o] m l Il]]
1 frame Ui U
) (10ms) > I 588
l—— (10ms) i detected
] i
1
]
«— (10ms) ___, | z_max
q)i
| I
PSS)
correlation kg iskingil | Aol AN edl |, " ooy M |, skl
- S time P3S
detected
References

1. 3GPP TS 36.214 "Physical layer"

See Also

Related Examples

. “LTE HDL MIB Recovery” on page 5-92

. “LTE HDL SIB1 Recovery” on page 5-74

. “LTE HDL PBCH Transmitter” on page 5-103

5-73

5 Reference Applications

LTE HDL SIB1 Recovery

5-74

This example shows how to design an HDL optimized receiver that can recover the first System
Information Block (SIB1) from an LTE downlink signal.

Introduction

This design builds on the “LTE HDL MIB Recovery” on page 5-92, adding the processing required to
decode SIB1. It is based on the LTE Toolbox™ “Cell Search, MIB and SIB1 Recovery” (LTE Toolbox).

In order to decode the SIB1 message, additional steps are required after the MIB (Master
Information Block) has been decoded. This design adds functionality to locate and decode the
PCFICH (Physical Control Format Indicator Channel), the PDCCH (Physical Downlink Control
Channel), and the PDSCH (Physical Downlink Shared Channel). The extensible architecture used in
the “LTE HDL MIB Recovery” on page 5-92 allows the design to be expanded, while reusing the core
functionality of the MIB recovery implementation. This design can be implemented on SoC platforms
using hardware-software co-design and hardware support packages. See Deploy LTE HDL Reference
Applications on SoCs.

Summary of SIB1 Processing Stages

The initial stages of SIB1 recovery are the same as for the “LTE HDL MIB Recovery” on page 5-92,
composed of the cell search, PSS/SSS detection, OFDM demodulation, and MIB decoding. LTE signal
detection, timing and frequency synchronization, and OFDM demodulation are performed on the
received data, providing information on the subframe number, duplex mode, and cell ID of the
received waveform. The received data is buffered into the grid subframe memory buffer and, once a
complete subframe has been stored in the memory, the channel estimate is calculated. The channel
estimate can then be used to equalize the grid as data is read out from the buffer. When subframe 0
has been stored in the buffer, and the channel estimate calculated, the Physical Broadcast Channel
(PBCH) can then be retrieved from the grid, equalized, and decoded, recovering the MIB message.

The MIB message contains a number of parameters which are required to decode the subsequent
channels. One of these parameters is the System Frame Number (SFN). The SFN is required to
determine the location of the SIB1 message, since the SIB1 message is only sent in even numbered
frames (mod (SFN,2) = 0). Hence, if the MIB message was decoded within an odd frame, the
receiver must wait until the next even frame before attempting to decode the SIB1. When the
receiver has decoded the MIB message, and has received subframe 5 of an even frame, an attempt at
decoding the SIB1 can be made.

The MIB message also provides the NDLRB system parameter, indicating the Number of Downlink
Resource Blocks used by the transmitter. For different NDLRB values (different bandwidths) the
number of active subcarriers is different. Hence the NDLRB affects the indexing of the resource grid
memory for each of the channels processed after the PBCH.

NDLRB is first used to calculate the Resource Elements (REs) allocated to the Physical Control
Format Indicator Channel (PCFICH), and the corresponding symbols can be retrieved from the
resource grid. The PCFICH Decoder then attempts to decode the CFI data using the symbols
retrieved from the resource grid.

The CFI indicates the number of OFDM symbols allocated to the Physical Downlink Control Channel
(PDCCH). The CF1, in conjunction with the MIB parameters NDLRB, PHICH Duration, and Ng, is used
to calculate which Resource Elements (REs) are allocated to the PDCCH. These REs are requested
from the grid, and passed to the PDCCH decoder. If the signal being decoded is using Time Division

LTE HDL SIB1 Recovery

Duplexing (TDD) the PDCCH allocation varies based on the TDD configuration used. Because the TDD
configuration is not know at this point, each of the TDD configurations that affect the PDCCH
allocation are tried, until successfully decoding.

Once the PDCCH has been decoded, a blind search of the PDCCH common search space is conducted
to find the DCI (Downlink Control Information) message for the SIB1. This DCI message has a CRC
scrambled with the SI-RNTI (System Information Radio Network Temporary Identifier) and carries
information about the allocation and encoding of the SIB1 message within the PDSCH. The search
operation blindly attempts to decode DCI messages with a number of possible formats, from a
number of candidates. If the signal being decoded is using TDD and a DCI message is not found
during the search, then PDCCH decoding will be re-attempted for any untried TDD configurations.

Once located, the DCI message is parsed, giving the DCI allocation type, RIV, and Gap parameters
required for the PDSCH resource allocation calculation. The Physical Resource Blocks (PRBs)
allocated to the SIB1 message within the PDSCH can then be calculated. Parsing the DCI message
also provides information on the transport block length and redundancy versions required to decode
the PDSCH.

Using the PRB allocation information the REs allocated to the SIB1 message within the PDSCH can
be calculated. The PDSCH decoding then processes the data retrieved from the resource grid. If
decoding is error free the SIB1 message bits are returned.

Architecture and Configuration

The architecture is designed to be extensible, allowing channel processing subsystems to be added,
removed, or exchanged for alternative implementations. This extensibility is illustrated by the
additions made to the MIB design to produce the SIB1 design. The core functionality is the same,
with additional processing and control added for the three extra channels required to decode the
SIB1.

3-75

5 Reference Applications

@)

1/Q data

@30.72 Msps

5-76

Sync & Demod
Frequency PSSSSS& OFDM —
Recovery Detection Demod
Indexing Decoding
PBCH Indexing ! PBCH Decode
Grid
PCFICH Indexing PCFICH Decode
Resource Channel _
o Grid Estimation + "
) Buffer Equalization PDCCH Decode
PDCCH Indexing + Search
- PDSCH Indexing PDSCH Decode * SIB1
DCI Allocation
DCI Parse + Resource -

Allocation

To allow reuse and sharing of the main subsystems of the model, the example uses “Model
References”. Model referencing allows for unit testing of each of the subsystems, and for the models
to be instantiated in multiple different examples. The LTE HDL Cell Search, LTE HDL MIB Recovery
and LTE HDL SIB1 recovery all share reference models.

Cell search, synchronization and OFDM demodulation perform initial stages of detecting a
downlink signal and synchronization. Unequalized grid data is streamed out to be buffered in the
grid memory for further processing.

The central resources of the grid memory, channel estimation, and channel equalization are
grouped together, with an interface such that data can be requested by providing an address to
the grid, and equalized symbols are output for processing by the decoding stages.

The indexing subsystems request data from the grid by providing a subcarrier number, an OFDM
symbol number, and a read enable flag. These signals are grouped together in a bus for easier
routing in the Simulink model. Only one indexing subsystem can access the grid at a time. A
controller is used to avoid contention and enable the indexing subsystems at the correct time.
Each of the indexing subsystems has a corresponding decoding subsystem, which attempts to
decode the data requested from the grid by the indexing subsystem.

The decoding subsystems receive equalized complex symbols from the grid, with a signal
indicating when the incoming data is valid. The decoding subsystems must be enabled before they
will start to process valid samples at the input, and it is expected that only one of the decoding
subsystems will be enabled at any point in time. A central controller for the SIB1 decoder enables
the decoding subsystems at the appropriate time.

LTE HDL SIB1 Recovery

» The control subsystem tracks the state of the decoder and enables the decoding and indexing
subsystems in the correct sequence using the done, valid, detected, and error signals (as
appropriate) for the various processing stages.

* The DCI resource allocation function (ItehdlDCIResourceAllocation) was selected for
implementation on software, as part of a hardware/software co-design implementation. This
function was selected due to the low frequency of calculation, and the complex loop behaviour
making it inefficient to implement in hardware.

Structure of Example Model

The top-level of the l1tehdlSIB1Recovery model is shown in the figure below. The HDL LTE SIB1
subsystem supports HDL code generation. The SW DCI Resource Allocation subsystem represents
the software portion of a design partitioned for hardware/software co-design implementation. The
stateViewer MATLAB Function block generates text information messages based on the
decoderState signal from the HDL LTE SIB1, and prints this information to both the Simulink
Diagnostic Viewer and to a MATLAB figure window. The stateViewer also produces the
stopSimulation signal, which stops the simulation when the decoder reaches a terminal state, as
indicated by the text information messages.

5-77

5 Reference Applications

LTE HDL SIB1 Recovery Examplel

datal | convert
" dataln
alidl
veldin walidin
tartl
n startin

SW DCI Resource Allocation

PHICH

HDLLTE 5181

SW DCI Resource Allocation

The SW DCI Resource Allocation subsystem contains an instance of the
ItehdIDCIResourceAllocation model. Buses are used here to facilitate signal routing to and from
this subsystem.

5-78

LTE HDL SIB1 Recovery

g i MOLRE ltehdIDCIResourcedliocation - uint1d rc,':;m >
=nFrame> ufic 10 NFrame nint1G {100) o
- rbsat2 — -
<dciBits> it s
N (il N
) o " S| DeiLen rostee rbsize i i
SignalsTaSW > T 1)
P —— sagea| PC! Farmat validOut mearcmmgnp > SignalsFromSWW
dcDeeceds | bemean| o wints N
) RV o »
<gduplexMode= boclean uplextidode .
uant
@ P——. eEaf irbikl.en irblkien d
reset deiResourceAllocation
dciRecourceAllocation
The ItehdlDCIResourceAllocation model reference performs parsing of the DCI message bits,
generates the DCI parameters, then uses the DCI parameters to perform the DCI Physical Resource
Block (PRB) allocation calculation. These operations are equivalent to the LTE Toolbox functions
1teDCI and 1teDCIResourceAllocation. Due to the complexity of the PRB allocation calculation,
this part of the design was selected for implementation in software, as an HDL implementation would
require a large amount of hardware resources.
(D“ﬁﬂ »{ HOLRE rhSet b——m-—]
MOLRB
@ »] Dcibits b
OCIBits aType_out] AlocationType rbset] pr— theett e I(Xﬁ@
. rhaat1
4} »| DCiLen
DClLen
RIV_out | RV rbset? — —»i_ 2)
@mﬁ > é‘!r:c?g] valicin e o 109 theatd
Stant |—|"Z’
D(S%nal i [o e stCIResoﬁeAllccalun = Uim‘grb:ze
NDLRE haliteDCI
" RV_out T — D) | DoiFamat b colsf——]
@“ﬁro »|uint16] NFrame
MFrame
trbiian_out P i R P :lmsa?@
7y E Mad trbdkLen walidCut
duplexMode
clear vahidOut_out clear state_wire ——p—]
hdiiteDCI1 dciResourceAlloc
@@=

HDL LTE SIB1

The HDL LTE SIB1 subsystem contains 2 subsystems. The Downlink Sync Demod subsystem is an
instance of the ltehdlDownlinkSyncDemod model, which is described in the “LTE HDL Cell Search”
on page 5-57 example. It performs the cell search, timing and frequency synchronization, and OFDM
demodulation. The HDL MIB + SIB1 Decoder subsystem performs the channel decoding operations
required to decode the MIB and SIB1 messages, as described below.

5-79

5 Reference Applications

dataln

walidin

(O SeTb_Ents (] o TDOMode | -

"D

CellD

ItehdIDownlinkSyncDemod
fix

uf

decoderState b—
- E— NealliD decoderState @

i decoderState

ufix®

MNCellD

boolean

MNDLRB ———————————
NDLRE @

ufix 18 #| TDDMode NDOLRB
timingOfiset f—»— boolean

boolean
- PHICH———

sfix14 PHICH @

freqEst —»—] PHICH

- cellDetected
boolean boolean ufix?

acte 1Y
cellDetected I e & Ng @
3

ook walidin
oolean boolean

hDone

celSearchDone | calSearchDone puix10
> NFrame ——— (&)

NFrame
ufixd NFrame

nSubframe

ufix3
X sfix1B_En15 i) | o cemeP————— »({JT)
gridData > » CeliRefP
gridData ufid CellReiP

boolean fix?

startin

@

v

boolean| A gridDataValid CFI 4’

- OFDMdata

diagnostics ——m—] -
oolean

k] sbifits————— ({0

sib1Bits
sib1Bits

Downlink Sync Demod

»
boolean boolean

ib1 Bitsalid ————————————————

R =ib1BitsValid 0 :
sib1BitsValid

»{FROM_SW_DCIALLOC TO SW DCKHLOCH——— (7§)

FROM_SW_DCIALLOC TO_SW_DCIALLOC

5-80

HOL MIB + 5181 Dacoder

HDL MIB + SIB1 Decoder

The HDL MIB + SIB1 Decoder structure can be seen below. It receives OFDM demodulated grid
data from the Downlink Sync Demod subsystem, and stores the data in a subframe buffer,
Resource Grid Memory. It then calculates the channel estimate for the received data in the
Channel Estimation subsystem and uses this to equalize data as it is read out of the Resource Grid
Memory. A series of channel decoding steps are then performed in order to decode the SIB1
message. In total there are 10 referenced models at this level of hierarchy: 4 channel decoders, 4
channel index generation subsystems, and 2 subsystems performing resource grid buffering, channel
estimation, and equalization.

The PBCH Indexing, Resource Grid Memory, Channel Equalization and MIB Decoder all
instantiate the same referenced models used in the MIB example. For more detailed information
about the operation of these referenced models, refer to “LTE HDL MIB Recovery” on page 5-92.

LTE HDL SIB1 Recovery

NGalD

NesllD

@oO>— >§—»-m-mewm\ boolean
iplehlods Assume smallest BW unti FHICH [phich_ext)

ToDMade

callDatactad|

] o - o @
@] : o o
o

GRID

iehdCharnelEcu}
i DECODRC ltehdIPBCHDecader Jufix? =
{nCetiD] — RSt TNoLRe]
X &
[inceinor prn] o

W8 2 st i [ZEEID) S ree - oonet S
2

U0 & PHICH
& Nor [cel Detected] i
Uiz>0 ng

g Framenie]
cellSearchDone INDLRB] t“_‘ hehdiResources \Grid
e celDetectod], = . b
@ [nSbiam = - o nFrama
Naubframa grdnata enaviePBCt = < [oeliRe]
bocean] oroaste =
e OFphideta ocbmCelRere
et P) e MiBDetected TmieDstoctod]
INDEXING JeeSubframe] o .
= LeraPaCHindrg netemgac J o | E
[Tcam > oo nesty - resiReacy | oo
- o I ror f——-<_[mbEron |
g e, S s e o]
bePECH] o 8 —
enabio stat
ENCT fooea] "2t = - | arcrcroe o
e =
A maong | -] onf*d _—
prw— S T - —
{nCeiio] of i s bt adr Chamnel Equarzaton e
= s Razourcs Grd Mamary i
= 0]
[NDLRE] e addr| sdor E bociean Frame
l o JoriaWiteDone) alidOu ervara]

00
enabiePCFICA>—#| & NoT start,
Uiz =g _posiean

[nCeliD)

[NDLRE]
phich_ex]
Ng)
[CFI]

UsT uixto
JenabiePDCCH] & NOT [hstart <[oPOCCHSym]

|

[nCelliD)

sEEm o B

prosan otoe

sm o0 OB~ o utpuion
520 ot

fowetac et amigetace

]

oear Output]

=i —
EEEIED s |

PCFICH Indesing CONTROL CiDecoder
tahGIFDCCHIndexing == rectart e
callD] =
o colDetected e TO_SW DCIALLOC
e
ndiy] enabiePDCOH 3 —» 5
scardhail cellScarchFai —
g Geartutput| [dearOurpur] rPOCCHSym |
pSubirame] nSubiame [t |
=1 oociaan FROM_SW_DCIALLOC
o m e SaFormat
e writeSubirarms -WC\D“,‘EEKEN
[ribDetected] mibDetected [nCallD] = .
deDatected

[oF rameiB] nFrameMIa = Sop oo

- rame. [nFrame)
s
idWriteDone] gidWrieDone

O80T, 0°T

bosiaan
oiearOutpun) e ormor| < [0ciEror]

POCCH Indexing

Tesiready) hesRaady enati eecH fenablePBCH]
iahaPDSCHindexing PDCCHDecotaSearh
=i colRetP) carvare
casre PrenaDschecoser
colRelP TmibEror] mibError enablePCFICH [enablePCFICH] WD&M |ardData boctean
sib1_bits | m&
NOLRE cVald) [foriableP DSCH onavie Eaizi
i ‘enabiePDCCH [enablePDCCH] ‘boclean|
[@oDeected] ccatectad tociean
cn ssvaig

s [nCelliD] cai ook

Lt

TociErmon sciErar *Sb1Basvalid

mi imi

rBikLen] Bk en

i

Done [< T5bT001)

enableP DSCH]

?
i

& Ry

—

proSet2 fsib1Enor]

o

FDSCHDecode

Indexing Subsystems

There are 4 indexing subsystems, corresponding to the 4 channels that need to be decoded in order
to receive a SIB1 message: PBCH, PCFICH, PDCCH, and PDSCH. Each of the indexing subsystems
has a corresponding decoding subsystem. The indexing subsystems use an address bus, consisting of
a read address corresponding to the subcarrier number, a read bank corresponding to an OFDM
symbol, and a read enable signal to control access to the grid. The read_selector MATLAB Function
block selects between the outputs of the 4 indexing subsystems based on the read enable signal. It is
assumed that only one indexing subsystem will attempt to read from the grid at any point in time,
with the CONTROL subsystem in charge of enabling the indexing subsystems at the appropriate
time.

PBCH Indexing

The PBCH Indexing block references the ltehdlPBCHIndexing model. It performs the index
generation for the PBCH and is equivalent to the LTE Toolbox function 1tePBCHIndices.

5-81

5 Reference Applications

celliD

start

fixd

addr_in
- . rd_hank rd_hank
- uctiant —.'_ conwart —
@)———»|ncaiD dx_data 9 - ’ addressBus @
a

boolean .
@—b shart idx_data_vabd —

ramander — >

r

miced(1.2°6G) rd_an

PBCHIndGen

PCFICH Indexing

The PCFICH Indexing block references the ltehdlPCFICHIndexing model. It generates the indices
required to read the PCFICH symbols from the grid memory and is equivalent to the LTE Toolbox
function 1tePCFICHIndices. The PCFICH is always in the first OFDM symbol (the first memory
bank of the grid buffer) and is 16 symbols in length, in 4 groups of 4 symbols. The 4 groups of
symbols are distributed at quarters of the occupied bandwidth, with an offset dependent on the Cell
ID.

RS Index Skip the RS and unusued cells

celllD

116 1y mod_out dxRed
0 !
S ensnit Offsetic
¥ \ B
Offtset Subcarrier . date Ist_pofich

HOL mad -
ioad_k)
b

[-1[5]

REG calculd
* K0 4 wou i
| fen
ount_en Emo d_addr
start id nable
callD ACounter
PCFICH d_bark VTN
fessEus

1 accumulator for sach quadruplet D

NDLRE

5-82

n d NDLRB
E en start
enbGen Samples Serting
FCFICH

k0 is the lowest index of each quadruplst rd_en

PDCCH Indexing

The PDCCH Indexing subsystem generates the indices required to read the PDCCH symbols from
the grid memory. It references the ltehdIPDCCHIndexing model and is equivalent to the LTE
Toolbox functions 1tePDCCHINdices and 1tePDCCHDeinterleave. The PDCCH spans between 1
and 4 OFDM symbols, as defined by the value decoded from the PCFICH. The number of subcarriers
spanned by the PDCCH depends on NDLRB. As a result, the number of symbols read from the grid
varies, which is indicated by the nSymbols output. The PDCCH occupies all of the OFDM symbols
indicated by the CFI, but must exclude any locations which have already been allocated to other
channels, such as the PCFICH and PHICH. The main indexing calculation is performed by the
PDCCH_Index_Gen subsystem. It calculates the locations of the PCFICH and PHICH then excludes
these locations from the range of indices occupied by the PDCCH. In TDD mode number of symbols
occupied by the PHICH varies based on the TDD configuration. For different TDD configurations
there are three possible values of mi (0, 1, and 2), as specified in section 6.9 of [1], which is a
multiplier to the size of the region allocated to the PHICH. When in the duplexing mode is FDD, mi is

LTE HDL SIB1 Recovery

always 1. The size of the PDCCH in terms of both quadruplets (groups of 4 symbols) and symbols is
given by the Mquad and Msymb outputs.

The ramAddrCalc and lk_ram subsystems are used to perform a cyclic shift on the quadruplets
using the cellID. Because the DCI message for SIB1 is always transmitted in the common search
space of the PDCCH, it is possible to reduce the number of symbols that are read from the grid
memory by retrieving only the symbols from the common search space. In order to do this the
PDCCH deinterleaving operation is performed, and the first 576 symbols are requested from the grid.
If there are less than 576 symbols in the PDCCH then all of the symbols will be requested. In LTE
Toolbox, the PDCCH deinterleaving operation is performed as part of the 1tePDCCHDecode function.
However, as this function simply re-orders the data and does not change the data content, it is
possible to move this processing stage to an earlier point in the receiver. By moving the deinterleaver
to act on the indices, rather than the data, and reducing to the common search space after
deinterleaving, the memory requirements for the deinterleaver and the PDCCH decoder are reduced.

bocie
6 1_out f—v7p>|
st
oz
@ k_out —— din
cfi
o
1 ncellid valhd f———| " Balance RAM delay
celllD ey Go must arrive 1 early
pocis: rd_dout
a ndexDone
e mien _>l_. b L»l_>
o
r —» 2!
addr
it ranss _.l_. e) VS
ufix2
& M
=
- X =l
? s l l—b. 2 e
@um l [pdcch_deinterieave | -5
m
PDCCH_Index_Gen
Cindex sy o
st ——ff -8 —¢)
s ufix10
dddddddd izs | niSymbals
o
= e < . me |

PDSCH Indexing

The PDSCH Indexing calculates the locations of the PDSCH in the grid memory based on the
Physical Resource Block (PRB) set, which is passed to this block from the DCI resource allocation
calculation in the SW DCI Resource Allocation subsystem. The PDSCH Indexing is an instance of
the ltehdlPDSCHIndexing model and is equivalent to the LTE Toolbox function 1tePDSCHIndices.
The PDSCH occupies all of the symbols in the PRB set which have not previously been allocated to
another channel. Hence the PDSCH indexing function must exclude any locations which are allocated
to the PSS and SSS, and all of the control channel region (i.e. the OFDM symbols indicated by the
PCFICH). As the SIB1 message always occurs in subframe 5 of an even frame, there is no need to
exclude the PBCH locations, as these only occur in subframe 0.

5-83

5 Reference Applications

[} ey
@ - soarchix -
"
fa) N
wbCol prbSet
|cF1 PDSCHIdxCantroller el

Decoder Subsystems

There are 4 decoder subsystems, each of which has a corresponding indexing subsystem. When
enabled, the decoder subsystems process equalized symbols from the Channel Equalization
subsystem, performing the operations required to decode the channel. The CONTROL subsystem
enables each of the decoder subsystems at the appropriate time. The outputs from each of the
decoder subsystems are used to locate and decode subsequent channels in the chain. To ensure that
this information is available when required, each of the decoder subsystems registers the decoded
information at the output, for later access. The output registers are cleared using the clearOutputReg

input on each of the decoders.

MIB Decoder

The MIB Decoder uses the same referenced model, ltehdPBCHDecoder, that is used in the LTE
HDL MIB example. It performs the PBCH and BCH decode operations, equivalent to the LTE Toolbox
functions 1tePBCHDecode and 1teMIB. The outputs from this block provide the information required
to locate and decode the channel information for the subsequent channels.

@@=
Neaiin
S
@—
o
LZ
o Joad
@ g b S e aan g\,.ﬁm o eiRe
enabliOmcoder
i LTE Gold Sequence
Pty repeaiFSK|
! seq
peat_cpsk onb el .
s restarMiB NOLRS| =+ @D
. S e s | NoLRa
fin s valdin || | eHIcHDumBbon) 1
o cymo " E prcsomatenl {1 Tp——afz T |— @D
FricH
soected k. o . :
— ¥ " &
e] e g T —=
r_en PBCH Rate Recovery
boolean| n NFrame| 1
o A)
o M erert Nerame
tart = ot 1
s S S weDsesss| 17— |+
— TiaDetecied
nzsonsf—»=
BCH Decoder
PBCH Controller
o]]
e e G

e

1a__Pf
restarbBPuReREsyne

resorNE WIB Interpretaton

MIBDstactsd

19___°F
MIEDetecledP ulseResyne
e repesiQPSK

194___PJ
repaatOPEKPUREREzyNE

@ N

caarOuputRzg

CFI Decoder

5-84

LTE HDL SIB1 Recovery

@ boclean

The CFI Decoder uses the ltehdIPCFICHDecoder referenced model. It performs the PCFICH and
CFI decode operations equivalent to the 1tePCFICHDecode and 1teCFIDecode functions in LTE
Toolbox. The input from the Channel Equalization is the 16 symbols requested by the PCFICH
Indexing. The PCFICH Decoder subsystem performs descrambling and QPSK demodulation on the
16 PCFICH symbols to produce 32 soft bits. The CFI Extraction subsystem then correlates the soft
bits with the three CFI codewords. The codeword with the strongest correlation gives the CFI value
of 1, 2, or 3. The CFI value indicates the number of OFDM symbols occupied by the PCFICH. If
NDLRB is greater than ten, the number of OFDM symbols is equal to the CFI value (1, 2, or 3). If
NDLRB is less than or equal to ten, the number of OFDM symbols is one larger than the CFI value (2,
3, or 4). This information is used by the PDCCH Indexing and PDSCH Indexing subsystems.

dlearQutputReg

—— 2qDataBus i
¥

sym

ol FRepeat i
v Zx l

reset CFI val
n 1 2 1

»
resigeryalid1

bitsOut P 5ym validOut & NOT] val
H Ser validOut
resigeryalid

symbols

<eqSymbolsValid>

boclean
2) »
enable

. valid —p] valid cfi_max] val

ufixd pcﬁch_v’allcr Max_new .
a3 | cell ID P en »—]
celllD » S

S resigeryalid2
PCFICH Decoder CF| Extraction
PDCCHDecodeSearch

The PDCCHDecodeSearch subsystem uses the ltehdlPDCCHDecode referenced model. It
performs the PDCCH decode, blind PDCCH search, and DCI decode operations required to locate and
decode the SIB1 DCI message within the PDCCH. This is roughly equivalent to the LTE Toolbox
functions 1tePDCCHDecode, 1tePDCCHSearch, and 1teDCI (which is used within
1tePDCCHSearch) with a few modifications. As the SIB1 DCI message is always within the common
search space of the PDCCH, only these symbols are retrieved from the grid buffer, as described above
for PDCCH Indexing. The SIB1 DCI message is always DCI format 1A or 1C. It is found in the
PDCCH common search space using PDCCH aggregation levels 4 or 8, and the CRC for the DCI
message is scrambled with the System Information Radio Network Temporary Identifier (SI-RNTI).
Using this information the search can be simplified compared to the LTE Toolbox 1tePDCCHSearch
implementation. For more information on the LTE Toolbox PDCCH search process, see the “PDCCH
Blind Search and DCI Decoding” (LTE Toolbox) example. The PDCCHSearch subsystem blindly
attempts to decode DCI messages from all of the possible candidates and combinations within the
common search space until a DCI message with the correct CRC mask is decoded, indicating that the
SIB1 DCI message has been found, or all candidates have been attempted, and no SIB1 DCI message
has been found. When a SIB1 DCI message has been found, the search stops, and the information
from the decoded DCI message is returned from the block. This information is then passed to the SW
DCI Resource Allocation subsystem to parse the DCI message, and determine which resources in
the PDSCH have been allocated to the SIB1 message.

The demod/descramble subsystem performs descrambling and QPSK demodulation, while the
PDCCHSearch subsystem performs the search process described in more detail below.

5-85

5 Reference Applications

=eqBymbols>

gridData » sy'nb:ul; "
<eqSymbpis\alids escramibled | dataln
! descramData — r'_‘J, 2 » Z‘i >
boalean AND ¥ dcigits | Ufixd] —
2 » walidin deiBits
enable
ufixd d d -) validin
@ i calllD descramValid J_I
. N i
di » L 2
et (0 e | uﬁxED
demod/descramble deiSize
ufix10
Repaat n
K3 | nBits
&>, P e =
nSymbols
deiFormat r“JJ, 2] - r“|Z1| 3
21 daiFormat l I:cclearé = ;
ciFormal
ufix?
) | NOLRE
NDLRE
detected »1 2] =J] »
© CRC_DETECTED |_|J' driDetected z l boalean
@ boalean Repeat i detected
T2 l duplexMaoda g
U=0
& NOT ’_I
Uiz=0 > ;
emor r"‘l] L »_ 5)
R i |_|J' deiError boclean
hoolean epeat learOutputR
- » | clearCutputRiag error
" A 2x l clearQutputRag
dlearOutputReg
PDCCHSearch
PDCCHSearch

5-86

Within the PDCCHSearch subsystem there are a number of processing stages which combine to
perform the PDCCH search operation. The pdcchSearchControl MATLAB Function block writes the
incoming data to the PDCCH RAM, then controls the search process, iterating through the different
combinations of DCI format, PDCCH format, and PDCCH candidates. The dciControl MATLAB
Function block generates the read addresses for the PDCCH RAM given the PDCCH candidate
number and size. The pdcchRateRecovery MATLAB Function block is equivalent to the LTE Toolbox
function 1teRateRecoverConvolutional, performing the deinterleaving and rate recovery for the
convolutional decoder. The dciDecode subsystem performs the convolutional decoding of the rate
recovered bits, then checks the message CRC with the SI-RNTI to determine if a SIB1 DCI message
has been found. If successfully decoded, the DCI message bits are buffered and output, and the
search process is stopped. The PDCCH search process will also stop if all of the possible candidates
have been checked, but no DCI message for SIB1 has been found, with the error output being
asserted.

LTE HDL SIB1 Recovery

stateOutf——0————
STATEQUT =

() ———»{dstain Ensurin g start
datain . armives one
+&D clack oycle
arror before valid
dochFormat f————————-
@@ #]valin ! pdcchFormat = FDCCH RAM
validin
stz Out |
searchDala
- withddr wr_addr
nBits. searchAddr -
rd_dout
pdech_search wr o dataOut dataln desBis |——)
restart pos edge detector deiControl deiBits
validin
searchSart 1 1 start rd_addr
— candi andidate_nurffer dataVakd stat A validOut validin doiSize
deiControl - pdeet ¥ doiSize
Matching RAM delay?
cand and_sre candidate.
candidateSize - - L piputien
e _vaiid
Fomat [deiformat subBiock_Siza_out| magSize detected » 2)
subBlock_Size detected
pdcchSearchControl
DCI_SIZE
2 e L o BW e =
NDLRE NOLRE to_index pcchRateRecovery
5 clearDutputRiag End|
duplexMode
dciSizeSelect
&>
clearOuiputAeg deiDecode
CRCEND
CAC_DETECTED

deiFormat

PDSCHDecode

The PDSCHDecode subsystem uses the ltehdlPDSCHDecode referenced model. It is equivalent to
the 1tePDSCHDecode and 1teDLSCHDecode functions in LTE Toolbox. The QPSKDemod and
PDSCHPRBS demodulate the incoming signals and generate the descrambling sequence. The
descrambled bits are then passed to TurboRateRecovery which performs deinterleaving and rate
recovery of the incoming bits. The SampleControlBusGeneration subsystem generates the control
signals required to interface with the LTE Turbo Decoder and LTE CRC Decoder, which decode the
signal. The LTE CRC Decoder indicates the status of the CRC decode, asserting the err signal, along
with the end signal in the ctrl bus output, if errors have been detected. If the CRC does not detect
any errors then the SIB1 message has been successfully decoded, and the sib1 bits are streamed out
from the block, with bitsValid indicating when sib1 bits are valid. Once the SIB1 message has been
detected, and the bits output from PDSCHDecode, the simulation stops. No attempt is made to
combine the different Redundancy Versions (RVs) of the DLSCH.

‘‘‘‘‘‘‘‘
sosc| >l « « LTE Turko Deco
= TET
Fr=r=rry
nnnnnnnn —E— 4,—> blocksize rboCl
szl | T Tumober

CONTROL Subsystem

The CONTROL subsystem tracks the state of the decoder through the different channel processing
stages, enabling each of the indexing and decoding subsystems in turn. The subframe number and
frame number are taken as inputs, allowing the frameCount function to track the System Frame
Number (SFN). The subframe and frame numbers are used to determine when channels will be

5-87

5 Reference Applications

available for decode (e.g. SIB1 is only transmitted on subframe 5 of even numbered frames). The
decoderState MATLAB Function block implements a simple state machine that keeps track of which
processing stages have been completed, and which stage to enable next. The state of the decoder is
output from the controller, and is parsed by the stateViewer MATLAB Function block at the top level
of the model to produce human readable messages.

When the received signal is in TDD mode the CONTROL subsystem manages the blind search of each
of the TDD configurations, running the PDCCH Indexing and PDCCH Decoding subsystems for
each of the three possible mi values. The different mi values {0,1,2} result in different PHICH
allocations, hence different PDCCH allocations. The PDCCH allocations are calculated, and the
PDCCH decode attempted for each mi value, until a SIB1 DCI message is found, or all of the
possibilities are exhausted.

@—] -
rastart
restart L
restart rastart slate T@
nSubframe sae state
@ nSubFrama
nSubframe
nSubframe nSubframa
@] »] mibDatected
mibDetected
mibDetected I'-Fﬂ!l'l‘\E‘—l—> ; o
1 E nFrame clearOuiput 4@
-n T ¥ nFrame_mib
nFramabiB — clearutput clearOutput
nFramehIB frameCount
—P| 1 h] cellDetected
@ z cellDetected
cellDetactad
al P cellSearchFail writeSubframe -
; cellSearchFaé writeSubframe .
cellSearchFail writeSubframe
1
—D'IZ' h B dupdaxhoda
@ duplexhMode
duplexhode
U=0 i
—D@ - » & NOT] gridWrDone nFrama0ut 4@
: = gridWiiteDone W >0 nFrame
grid¥Write Done - nFrame
..I 1 h h
i | hestR
hestReady v
hestReady
1 | ! i ..
—.-Iz- lll » =0 | cellReiP_valid enablePBCHE—— {5
celReiP Rl - 4 enablePECH
cellReiP decoderState enablePECH
2], :
P T # mib_detected
L _
allow for nFrame calc
output after MIB detected
.,| 1; a2 ——" ;
T P T | mib_error enableP CFICH L
@ mibError = - enablePCFICH @
mibErrar enablePCFICH
@—.-E‘I' . p{cfi_valid
1 cfivasd allow PDCCH decade to
finish before maving on
@—.-E‘I' _ :J Z-300 |—] dciDatected ensblePDCCH —————— {70
k deoiDatected | enablePDCCH
dciDetectad enablePODCCH
a@—'} p sciError
. daiError
dciError
..| 1 h
= | prbCalcDone m 4'
@ proCalcDone mi
prbCalcDone mi
—P| 1;] sib1_done
z sib1Done -
sib1Done
blePOSCH
1] 5ib1_error enablePDECH Lﬁ.
@ — s - D
sib1Emor enablePDSCH

decoderStateContral

Results and Display

The simulation model is configured to stop the simulation under a number of conditions:

5-88

LTE HDL SIB1 Recovery

» If the cell search does not find any cells.

+ If the MIB detection has an error.

» Ifa SI-RNTI DCI message is not detected during the PDCCH search.
* At the end of the PDSCH decoding attempt.

If the SIB1 message is successfully decoded, it is output from the sib1Bits port, with the sibl1BitsValid
port indicating when the output is valid. The data is buffered and sent to the MATLAB workspace.

The LTE HDL SIB1 Receiver State Information figure window displays text messages indicating the
current state of the decoder. The state of the system is tracked by the CONTROL subsystem, with the
decoderState signal passed up to the top level of the model where the statePrint MATLAB Function
block generates the text info messages.

4. LTE HDL SIB1 Receiver State Information — O -

Waiting for P

P55 Detected, waiting for subframe 0

Writing subframe 0 to Grid Buffer

Writing subframe 0 done, waiting for channel estimate
Channel estimation complete for subframe 0, attempting MIB
Detected MIB and CellRefP, waiting for MIB decode

MIB decoded in even f[frame, waiting for subframe 5

How have subframe 5, waiting for channel eatimate

Subframe 5 channel estimate ready, starting CFI decode

CFI decode complete, starting PDCCH search

POCCH search complete, DCI detected with 5I-BNTI, starting PEB calculation

PEB calculation complete, starting POSCH decode

* STOPPING SIMULATION : DECODED PDSCH, RECEIVED SIB1! *

The display blocks in the top level of the model show some of the key parameters decoded by each of
the channel processing stages. A number of the key control signals, from within the CONTROL
subsystem, are logged for viewing with the logic analyzer.

5-89

5 Reference Applications

25 ItehdISIBIRecovery - Logic Analyzer - m} x

5-90

HDL Code Generation and Verification

To generate the HDL code for this example you must have an HDL Coder™ license. Note that test
bench generation for this example takes a long time due to the length of the simulation required to
create the test vectors.

HDL code for the HDL LTE SIB1 subsystem was generated using the HDL Workflow Advisor IP Core
Generation workflow for a Xilinx® Zynq®-7000 ZC706 evaluation board, and then synthesized. The
post place and route resource utilization results are shown below. The design met timing with a
target clock frequency of 150MHz. Using the workflow advisor IP core generation workflow allows
the input and output ports to be mapped to AXI4-Lite registers, reducing the number of FPGA IO pins
required, and allows the design to be split between hardware and software.

Resource Usage

Slice Registers 128726

Slice LUTs 70032
RAMB18 52
RAMB36 193
DSP48 156

For more information see “Prototype Wireless Communications Algorithms on Hardware” on page 2-
12.

Simulation Limitations

The stateViewer MATLAB function block is not supported for simulation in rapid accelerator mode.
This block can be removed or commented out if rapid accelerator simulation is required.

LTE HDL SIB1 Recovery

References

1. 3GPP TS 36.211, "Physical Channels and Modulation"

See Also

Related Examples
. “LTE HDL Cell Search” on page 5-57
. “LTE HDL MIB Recovery” on page 5-92

5-91

5 Reference Applications

LTE HDL MIB Recovery

5-92

This example shows how to design an LTE MIB recovery system optimized for HDL code generation
and hardware implementation.

Introduction

The model presented in this example can be used to locate and decode the MIB from LTE downlink
signals. It builds upon the “LTE HDL Cell Search” on page 5-57 example, adding processing stages to
decode the MIB. The Master Information Block (MIB) message is transmitted in the Physical
Broadcast Channel (PBCH), and carries essential system information:

* Number of Downlink Resource Blocks (NDLRB), indicating the system bandwidth

* System Frame Number (SFN)
* PHICH (Physical HARQ Indicator Channel) Configuration

The design is optimized for HDL code generation and the architecture is extensible, allowing
additional processing stages to be added, such as indexing and decoding for the PCFICH, PDCCH and
PDSCH (see “LTE HDL SIB1 Recovery” on page 5-74). This design can be implemented on SoC
platforms using hardware-software co-design and hardware support packages. See “Deploy LTE HDL
Reference Applications on SoCs” on page 5-119.

MIB Processing Stages
In order to decode the MIB message this example performs these operations:

* Cell search and OFDM demodulation

* Buffering grid data

* Channel estimation and equalization

* PBCH Indexing - locating PBCH within the grid

* PBCH Decoding - decoding PBCH, BCH, and MIB

Cell Search and OFDM Demodulation

LTE signal detection, timing and frequency synchronization, and OFDM demodulation are performed
on the received data. This produces the grid data and provides information on the subframe number
and cell ID of the received waveform. The MIB message is always carried in subframe 0, and the
cellID is used to determine the location of the cell-specific reference signals (CRS) for channel
estimation, as well as being used to initialize the descrambling sequence for PBCH Decoder.

Buffering Grid Data

As the MIB message is always carried in subframe 0 of the downlink signal, subframe 0 is buffered in
a memory bank. At the same time as the subframe is being written to the memory bank, the location
of the CRS are calculated using the cellID, and CRS are sent to the channel estimator.

Channel Estimation

The CRS from the received grid are then compared to the expected values, and the phase offset
calculated. The channel estimates for each CRS are averaged across time, and linear interpolation is
used to estimate the channel for subcarriers which do not contain CRS. The channel estimate for the
subframe is used to equalize data when it is read from the grid memory.

LTE HDL MIB Recovery

)

PBCH Indexing

The PBCH is always allocated to the central 6 Resource Blocks (RBs) of subframe 0, within the first 4
OFDM symbols of the 2nd slot. It occupies all of the Resource Elements (REs) within this region,
excluding the locations allocated to CRS. The locations of the CRS are calculated using the cellID,
then the addresses of the REs occupied by the PBCH can be calculated (240 locations in total), and
the data retrieved from the grid memory bank.

PBCH Decoding

As the PBCH data is read from the grid memory bank it is equalized using the channel estimate. The
240 equalized PBCH symbols are buffered, and PBCH and BCH decoding are attempted for each of
the 4 possible versions of the MIB within a PBCH transport block. Each of these versions requires a
different descrambling sequence, so descrambling, demodulation, rate recovery, convolutional
decoding, and CRC check must be attempted for each. If successfully decoded, the CRC value gives
the cellRefP value - the number of transmit antennas, and the MIB bits can be parsed to give the
system parameters.

Model Architecture

The architecture of the LTE HDL Cell Search and MIB Recovery implementation is shown in the
diagram below.

Frequency P;SSSS& OFDM
1Q data Recavery Detection Demod
@30.72 Msps
r
Indexing Grid Decoding

Resource Channel
" Grid Estimation +
Buffer Equalization

— MIB

PBCH Indexing PBCH Decode

The input to the receiver is baseband I/Q data, sampled at 30.72 Msps. A 2048-point FFT is used for
OFDM demodulation, and is sufficient to decode all of the supported LTE bandwidths. The resource
grid buffer is capable of storing one subframe of LTE data. Once the receiver has synchronized to a
cell, data from the OFDM demodulator is written into the grid buffer. The PBCH indexing block then
generates the indices of the resource elements which carry the PBCH. Those resource elements are
read out of the grid buffer and equalized, before being passed through the PBCH decoder. This
architecture is designed to be extensible and scalable so that additional channel indexing and
decoding functions can be inserted as needed. For example it can be extended to perform SIB1
recovery as shown in the “LTE HDL SIB1 Recovery” on page 5-74 example.

5-93

5 Reference Applications

The top level of the ltehdIMIBRecovery model is shown below. HDL code can be generated for the
HDL LTE MIB Recovery subsystem.

LTE Cell Search and MIB Reccvery'

¥

dataln

convert

hJ

dataln

¥

validin

validin

startin

5-94

I
startin

dataln

NCelID

TODMode

HOL LTE MIB Recovery

hd

LUILREERNED]

hd

OR

6

The 1tehdlMIBRecovery init.m script is executed automatically by the model's InitFcn
callback. This script generates the dataln and startIn stimulus signals as well as any of the constants
needed to initialize the model. Input data can be loaded from a file which, for this example, is an LTE
signal captured off the air. For information about capturing LTE signals off the air see “LTE Receiver
Using Analog Devices AD9361/AD9364” (Communications Toolbox Support Package for Xilinx Zyng-
Based Radio). Alternatively, an LTE waveform can be synthesized using LTE Toolbox functions. To
select an input source, change the Loadfromfile parameter in LtehdlMIBRecovery init.m

SamplingRate
simParams.Ts

loadfromfile

30.72e6;

1/SamplingRate;

true;

if loadfromfile
load('eNodeBWaveform.mat');
resample(rxWaveform,SamplingRate, fs);

dataln =
else

dataln =
end

hGenerateDLRXWaveform() ;

LTE HDL MIB Recovery

HDL Optimized LTE MIB Recovery

The structure of the HDL LTE MIB Recovery subsystem is shown below. The Downlink Sync
Demod block performs frequency and time synchronization, PSS/SSS signal detection, and OFDM
demodulation. The MIB Decoder subsystem buffers subframe 0 of the incoming data, performs
channel estimation, and attempts to decode the PBCH to recover the MIB information.

i

MNCelliD
ConfrolSignals
ltehd|DownlinkSyncDemad Yyfixg
NCellD *_ 1)
NCEIID ufi?
»{HceiiD NDLRE e @D
S »(E ufix NOLRB
(D] dataln o TDDMode @&
sfix16_|En15 (c) TOOMode
dataln
i L > boolean
timingOffiset] »(3 PHICH »(7)
freqEst FHICH
9 PHICH
sfic14
freqEst| P cellDatected
boolean
@ ufix2
callDetected cellDatected Mg »(_ 8
celiDetected Mg
boolean Ng
2) P—— validin
i boolean
validin Dona D)
ufix10
cellSearchDons | Nsubframe NFrame »(0)
bF " ufixd nFrame
ufixd subFramehum MNFrame
sfix16_En15 [c) orjdData 3
3 - » ufix3
andData Celftaff [»(0)
CellRafP
boolean »l
3} - 5 - ‘OFDMdsta
idWalid >
b boolean SN D atavalid
boolean
mibDetected iEDemae at il
i i L latecte
a dETzie) — mibDetected
Downlink Sync Demaod
| rastart boolean
mibError L
start mibErmar =
mibErmor

MIB Decoder

Downlink Synchronization and Demodulation

The Downlink Sync Demod subsystem takes in I/Q data at 30.72 Msps, and outputs the unequalized
downlink resource grid data. It is an instance of the ltehdlDownlinkSyncDemod model reference,
which implements the following functions:

» Frequency recovery

* Primary Synchronization Signal (PSS) detection

* Secondary Synchronization Signal (SSS) detection

* Timing recovery, based on the PSS and SSS signals

* OFDM demodulation (using a 2048 point FFT)

* Cell ID calculation, based on PSS and SSS detection results

The operation of the ltehdlDownlinkSyncDemod is described in more detail in the “LTE HDL Cell
Search” on page 5-57 example.

MIB Decoder

5-95

5 Reference Applications

The MIB Decoder subsystem is shown below. It consists of four subsystems: PBCH Indexing,
Resource Grid Memory, Channel Equalization, and PBCH Decoder. The order of operations is as

follows:

1
2

Resource Grid Memory.

Channel Equalization block.

extracted.

boolean

cellDetected

restart

€D

cellDetected)|

[clearCutpu)

GRID

e

cellDetected] p—r—.

el
[nCellil] .

[nSubframe]
uficd

cellDetected] —
Ol

ItehdIRescurcaGrid
rst

gridData

OFDMdata

ufind

subframe
Msubframe

[nSubframe]|

U CallD]
@

NealllD

[nSubframe] —>—w{== 0}

OFDMdata

ttehdIChannelEqual

cellDetected

NCelllD

eqDataBus|

The Channel Equalization subsystem calculates a channel estimate for subframe 0
The PBCH Indexing block starts generating PBCH resource element indices.
Those resource elements are then read out of the Resource Grid Memory and equalized by the

The cellDetected input is asserted, preparing the subsystem to receive and process data.
OFDM data is streamed into the MIB Decoder subsystem, and subframe 0 is stored in the

Finally the equalized PBCH data is passed through the PBCH Decoder block and the MIB is

DECODING

ufixd

NSubframe

NDLRE

INDEXING

ItehdIPECHIndexing
[nCelliD) calllD
ufized
addr

U=0
—™ & NOT
Wz >0

start
boolean

laddressBus

[Incenp)

hestReadAddr

ufied

PBCH Indaxing

ol 1 »
g addressBus| i

NoelllD

NDLRE

gridData

hestRdy
hestRdAddr

gridWriteDone

gridWiriteDone

k]

bus
A

rorcan,

Resource Grid Memory

Channel Equalization

Resource Grid Memory

eqSymb

ItehdIPECHDecoder
NDLRB

NCelllD

FHICH

N

eqDataBus

boolean

clearCutput] .

ymhals

MNFrame

enableDecodyr, o o

MIBDetected

clearOutputReg

- MIEErar

T

ufix 7
i,
NDLRB
boolean
boolean
PHICH
ufix2
Mg

iz 10

D

NFrame

ufixd

——&D

CellRefP

boclean
==

mibDetected

boclean
==

mibErmror

PBCH Decoder

The Resource Grid Memory block contains a memory bank, logic to control reading and writing of
the grid memory bank, and logic to locate and output the CRS. The memory bank capacity is one
subframe of demodulated OFDM data at the largest supported LTE bandwidth (20MHz).

The MemoryBank Write Controller is responsible for writing subframes of data to the memory
bank. The writeSubframe input enables the write controller for the appropriate subframes; subframe
0 in the case of the present example. The LTE Memory Bank contains RAM of dimensions 14 x 2048
x 16 bit complex values; that is 14 ODFM symbols, each containing 2048 complex values. The
rsOutputGen subsystem calculates the locations of the cell reference symbols, extracts these from
the data as it is written to the grid memory, and outputs these via the gridData output signal.

5-96

LTE HDL MIB Recovery

The gridData output port carries the CRS signals, from rsOutputGen, when data is being written to
the grid memory (gridWriteDone output port is low) and carries data from the LTE Memory Bank
when the write to the grid memory is complete (gridWriteDone output port is high).

| wrData

¥ wr_en_flag
3o wrscdr
ulix®
G o
NeelllD
rsOutputGen
bookean data_in > ‘
G———— = 7
o
st
* 1 gndData pridData
wr_addr ¥ wr_addr gridData - I—>
wr_addr
il ——————»(T)
OFDMdata wr_en_fiag| »|wr_en gridData
wr_en
bookean §
3 i (3 e saar - gridDataValid
boclean {
writeSubirame S e Writ=Dane N
MemoryBank. % 1
Write Controller ¥ | nbank dataViabd -
—|valid
Grid Memary Bank

addressBus
(D)} > nBank rd_bank >
<rd_bank= -

rd_bus e .
i .

. vt @
hestReadAddr

fi7

NDLRB

PBCH Indexing

The PBCH Indexing block computes the memory addresses required to retrieve the PBCH from the
grid memory buffer. This is equivalent to the LTE Toolbox 1tePBCHIndices function. The data
retrieved from the grid memory is then equalized and passed to the PBCH Decoder for processing.
The PBCH Indexing subsystem becomes active after the data for subframe 0 has been written to the
grid memory, as indicated by the gridWriteDone output of the Resource Grid Memory subsystem.
The PBCH is always 240 symbols in length, centered in the middle subcarriers, in the first 4 symbols
within the 2nd slot of subframe 0.

remindsr e -
adde_in i rd_bank rd_bank
@uﬁ*g—" NCelliD dx_data Ll _—h addressBus @
celliD modl12°8) o en addr

boolean .
@—b start idx_data_walid ——J

start

PBCHIndGen

Channel Estimation and Equalization

5-97

5 Reference Applications

=

The Channel Equalization block contains three main subsystems. cellRefGen generates the cell-
specific reference signal (CRS) symbols using a Gold Sequence generator. chEst performs channel
estimation assuming two transmit antennas by using a simple, hardware-friendly channel estimation
algorithm. TxDivDecode performs transmit diversity decoding to equalize the phase of the received
data, using the channel estimates.

The channel estimator assumes the transmitter is using two antennas, generating a channel estimate
for each antenna. For each antenna the channel estimator generates a single complex-valued channel
estimate for each subcarrier of the subframe using the following algorithm:

1 Estimate the channel at each CRS resource element by comparing the received value to the
expected symbol value (generated by cellRefGen).

2 Average these channel estimates across time (for the duration of the subframe) to generate a
single complex-valued channel estimate for each subcarrier that contains CRS symbols.

3 Use linear interpolation to estimate the channel for subcarriers which do not contain CRS
symbols.

The simple time average algorithm used for the channel estimation assumes low channel mobility.
Therefore, the channel estimate may not be of sufficient quality to decode waveforms that were
transmitted through fast fading channels. The algorithm also avoids using a division operation when
calculating the channel estimate at each CRS. This means that the amplitude of the received signal
will not be corrected, which is suitable for QPSK applications, but will not work for QAM, where
accurate amplitude correction is required for reliable decoding.

Once the channel estimates are calculated for each of the transmit antennas they are used to equalize
the gridData as it is read out from the Resource Grid Memory. TxDivDecode performs the inverse
of the precoding for transmit diversity (as described in of TS 36.211 Section 6.3.4.3[1]) and
produces an equalized output signal, which is then passed to the PBCH Decoder.

gridData

ufixd
3

<gridData>
4

NSubframe

ufixd

#{ Nsubframe

celiRaf

] ctdmsymb

(D)
NCelllD

boolaan

NealliD 2 . grdData

nGold

oR5

callDetected

- boolean

andwrtaDaps.

(€D

re\Vald raBank|
o I E 1 [revaid

outvalid 3
eqSympols
r@iDatecte e nEst_af
gDetected RS Est_al| A

cellReiGen eVilid

rsbank
rebank hEst_a1 8 —
eqDataBus
e e symbols

rscount

i

L reset rsCount

ount

callD

hEstvalid dataValid
nedirhy

z
]

LRBuﬁ:‘.

6

Svaid
aqSymbolsValid

hestRdAddr 7ﬁ—|
0 I hEstRd D] ssetCount
* 1 | dataValid y ==, sz rasetCou
estRdy

5-98

P reset

chist TxDivDecada

PBCH Decoder

The PBCH Decoder performs QPSK demodulation, descrambling, rate recovery, and BCH decoding.
It then extracts the MIB output parameters using the MIB Interpretation function block. These
operations are equivalent to the 1tePBCHDecode and 1teMIB functions in the LTE Toolbox.

LTE HDL MIB Recovery

The PBCH Controller stores the equalized data in memory for iterative convolutional decoding
attempts. The 4 attempts made at decoding the MIB correspond to the 4 repetitions of the MIB data
per PBCH transport block.

N| + z! D)
load
S = g MAES ey s etssen &l -
[Foge oo 175 g sewonce
eeeeeeeeeeeeeee —
[Reopert] 1 vl
LS ————@
Py Gold Gancral oo » NOLRG
"]
cccccccccccc . - et &
ggggggggg [s N SN P BN
i dout PBCH Descrambling 2 e
cccccccc PBCH Rate Recovery o) o
nnnnnn E
...... T
aaaaaaaaaa Er L — 2@ e
etec
F—3
BCH Decoder
PBCH Controller @
J« o
e —==T T
restarbiBPuBaResyrc
— MiBDetectzd
fs___of
gggggggggggggggggg -
e opeat
ta___r}
rpesiGPERPReResin:
uuuuuuu o]
3

BCH Decoder

The BCH Decoder quantizes the soft decisions and then decodes the data using the LTE
Convolutional Decoder and LTE CRC Decoder blocks. The recommended wordlength of soft decisions
at the input to the convolutional decoder is 4 bits. However, the BCH Decoder block receives 20-bit
soft decisions as input. Therefore the softBitScalingUnit block dynamically scales the data so that it
utilizes the full dynamic range of the 4 bit soft decisions. The CRC decoder block is configured to
return the full checksum mismatch value. The CRC mask, once checked against the allowed values,
provides cellRefP; the number of cell-specific reference signal antenna ports at the transmitter. If the
CRC checksum does not match one of the accepted values then MIB has not been successfully
decoded and the PBCH Controller decides whether or not to initiate another decoding attempt.

When a MIB has been successfully decoded, the MIB Interpretation subsystem extracts and outputs
the fields of the message.

dataOutf——— ("5)
oo P=A

o

repeatQPSK
1 [2x1) 1 data, repealQPsK
(G’ z i I dataln dataOut data data z ¥ deta ceedatacut &
x elodsiain
datain LTE Convoluticnal LTE CRC Decoder ctr z! chi
Decoder MIBDetectsd
ctrin ciriOu, etrl et e ar MIBDstected
rccirin
validin proerrpr
contralbusGen SoRBitScalingUnit Convolutional Decoder CRC Decoder restartiB——»{_ 3)
(D z1 ercEm restarthiB
jearReg
nimodd
nfmad4
clezrRag
o ()

cellRefP

BCH Controller

Performance Analysis

Quality of the input waveform is an important factor that impacts the decoding performance.
Common factors that affect signal quality are multi-path propagation conditions, channel attenuation
and interference from other cells. The quality of the input waveform can be measured using the
cellQualitySearch function. This function detects LTE cells in the input waveform and returns a
structure per LTE cell containing the following fields:

5-99

5 Reference Applications

5-100

* FrequencyOffset: Frequency offset obtained by 1teFrequencyOffsets function

* NCellID: Physical layer cell identity

* TimingOffset: Timing offset of the first frame in the input waveform

* RSRQdB: Reference Signal Received Quality (RSRQ) value in dB per TS 36.214 Section 5.1.3[2]

* ReportedRSRQ: RSRQ measurement report (integer between 0 and 34) per TS 36.133 Section
9.1.7[3]

Applying the cellQualitySearch function to the captured waveform eNodeBWaveform.mat used
in TtehdlMIBRecovery init.m returns the following report:

FrequencyOffset: 536.8614
NCellID: 76
TimingOffset: 12709
RSRQdB: -5.3654
ReportedRSRQ: 29

FrequencyOffset: 536.8614
NCellID: 160
TimingOffset: 3108
RSRQdB: -18.1206
ReportedRSRQ: 3

There are two cells in the captured waveform, one with cell ID 76 and one with cell ID 160. The cell
with NCellID = 76 has a much higher ReportedRSRQ, indicating that it is a stronger signal. In this
example the Simulink model decodes the MIB for NCellID = 76.

Results and Display

The scope below shows the key control signals for this example. After a pulse is asserted on the start
signal the cell search process is started. Successful detection of a cell is indicated by the cellDetected
signal. When the cellDetected signal is asserted the NCellID and TDDMode signal become active,
indicating the cell ID number and whether the cell is using TDD (1) or FDD (0). After the cell has
been detected the OFDM demodulator waits until subframe 0 of the next frame to start outputting the
grid data, hence there is a gap between cellDetected going high, and grid data being output as
indicated by the gridDataValid signal. When gridDataValid is first asserted subFrameNum will be
zero, and will increment for subsequent subframes. The simulation stops on the MIBDetected or
mibError signals being asserted.

LTE HDL MIB Recovery

4. ControlSignals — O *
File Tools View Simulation Help u
@vcﬂé'@uv- ;}vva‘ElvﬁFkﬁv

.||_.L atavalid

MCelID subFrameMum

mibError

Ready Sample based T=0.038

Once MIB has been detected the NDLRB, PHICH, Ng, nFrame, and CellRefP signals all become
active, indicating the key parameters of the cell. These parameters are displayed in the model, as
they are static values when the simulation is stopped.

The following MIB information is decoded when decoding the captured waveform:

NCellID (Cell ID): 76

TDDMode (0 = FDD, 1 = TDD) : O

NDLRB (Number of downlink resource blocks): 25
PHICH (PHICH duration) index: 0

Ng (HICH group multiplier): 2

NFrame (Frame number): 262

CellRefP (Cell-specific reference signals): 2

This indicates that the duplex mode used by the cell is FDD, the MIB was decoded in frame number
262, the PHICH duration is 'Normal' and the HICH group multiplier value is 'One'.

HDL Code Generation and Verification

To generate the HDL code for this example you must have an HDL Coder™ license. Use the makehdl
and makehdltb commands to generate HDL code and HDL testbench for the HDL LTE MIB

5-101

5 Reference Applications

5-102

Recovery subsystem. Because the input waveform in this example contains at least 40 subframes to
complete the cell search and MIB recovery, test bench generation takes a long time.

The HDL LTE MIB Recovery subsystem was synthesized on a Xilinx® Zyng®-7000 ZC706
evaluation board. The post place and route resource utilization results are shown in the table below.
The design met timing with a clock frequency of 140 MHz.

Resource Usage

Slice Registers 51582

Slice LUTs 29859
RAMB18 38
RAMB36 39
DSP48 134

For more information see “Prototype Wireless Communications Algorithms on Hardware” on page 2-
12.

References

1 3GPP TS 26.211 "Physical Channels and Modulation"
2 3GPP TS 36.214 "Physical layer"
3 3GPP TS 36.133 "Requirements for support of radio resource management"

See Also

Related Examples

. “LTE HDL Cell Search” on page 5-57

. “LTE HDL SIB1 Recovery” on page 5-74

. “LTE HDL PBCH Transmitter” on page 5-103

LTE HDL PBCH Transmitter

LTE HDL PBCH Transmitter

This example shows how to implement an LTE transmitter multiple-input multiple-output (MIMO)
design, including PSS, SSS, CRS, and MIB, optimized for HDL code generation.

Introduction

The model in this example generates a baseband waveform specified by 3GPP TS 36.211. The
waveform includes the primary synchronization signal (PSS), secondary synchronization signal (SSS),
cell-specific reference signals (CRS), and the master information block (MIB) for transmission
through the physical broadcast channel (PBCH) for multiple antennas. The model supports dynamic
change of NCellID and NDLRB. The MIMO transmitter design is optimized for HDL code generation
and when implemented on an FPGA, it can be used to transmit MIMO signals in real time over the air.
The MIMO design aids the decoding process in the presence of LTE fading channel. This example
supports 1, 2, or 4 antennas and uses transmit diversity as specified in the [1].

The architecture presented in this example is extensible and allows for integration of additional
physical transmission channels such as physical downlink control channel (PDCCH), physical
downlink shared channel (PDSCH), physical control format indicator channel (PCFICH), and physical
HARQ indicator channel (PHICH).

Architecture and Configuration

This figure shows the LTE HDL Transmitter architecture with PSS, SSS, CRS, and PBCH transmission
chains.

| .) ‘

—_— Ready g ™
OFDM Modulator J
PSS A > > and Filtering —
R Frame . o || L Antenna Port 1) :
@10.24 MHz Controller —
s D *)
SSS ! OFDM Modulator)
¢~ PBCHread) = and Filtering —
— Read Antenna Port 2 \
Write ~ 7)
PBCH |, . c D J
Encoder |0g|c OFDM Modulator
R MIB BCH > and Filtering —
Generation Encoder Antenna Port 3 \
A J - J
4 N *)J
OFDM Modulator
> > and Filtering
Antenna Port 4 Outputs
_) @30.72 MHz

The input sampling rate is assumed to be at 10.24 MHz. PSS, SSS, PBCH, and CRS signals are
generated in parallel, based on the input configuration. A single stream of PSS and SSS signals is
used for all the antennas. Multiple streams of PBCH data are generated for multiple antennas
through the layer mapping and precoding stages. Each antenna is associated with a corresponding
LTE memory bank, which is sized to store one subframe of LTE data samples. These generated data

5-103

5 Reference Applications

streams are written into LTE memory bank corresponding to indices generated, based on the output
ready signal of LTE OFDM Modulator. Then, the data is read out of all LTE memory bank in parallel,
modulated and transmitted on the antennas simultaneously. The LTE OFDM Modulator block uses a
2048-point FFT to support all NDLRBs.

In this example, the transmitter transmits LTE MIMO signals for the following configurations:

Property Value
Duplex mode FDD
CellRefP 1/2/4
Bandwidth 1.4 - 20 MHz
Cyclic prefix Normal/Extended
Initial subframe 0
Initial frame 0
Ng Sixth/Half/0One/Two
PHICH duration Normal/Extended

Structure of Example Model

The top level structure of the ItehdlTransmitter model is shown below. You can generate HDL code
for the HDL LTE MIMO Transmitter subsystem.

start
start
tx_samples
Celll
e Cut
NOLRB
| enahde
PHICH
te_wvalid
tx_walid
Mg

Input data ganeration

HDL LTE MIMC Transmitter

Input start is a pulse signal to trigger the transmission. You can configure other parameters,
including NDLRB, NCellID, Cyclic prefix, Ng, PHICH duration and CellRefP in the workspace after

5-104

LTE HDL PBCH Transmitter

loading or opening the 1tehdlTransmitter.slx model. The 1tehdlTransmitter init.m script
is executed automatically by the model's InitFcn callback. This script configures the individual
blocks in the HDL LTE MIMO Transmitter subsystem. The default transmitter configuration used
by the 1tehdlTransmitter init.m script is:

enb.NDLRB = 6; {6,15,25,50,75,100}

o°

o°

enb.CyclicPrefix = 'Normal’; {'Normal', 'Extended'}

o°

enb.Ng = 'Sixth'; {'Sixth', 'Half','One', 'Two'}

enb.PHICHDuration = 'Normal’;

o°

{'Normal', 'Extended'}

enb.CellRefP = 4;

o°

{1,2,4}
tx_cellids = [390 89 501 231 500]; % {0 to 503}
{1,2}

{positive integer}

outRate = 1;

o°

TotalSubframes = 45;

o°

This default configuration can be changed to use other possible values for each variable, as noted in
the comment on each line.

HDL LTE MIMO Transmitter

The structure of the HDL LTE MIMO Transmitter subsystem is shown below. The Frame
Controller controls the subframe and frame indices. The Input Sampler samples the inputs NDLRB
and NCellID and then propagates the values to the subsequent blocks. The PSS & SSS generation
generates PSS, SSS, and the corresponding memory address based on NDLRB and subframe index.
The MIB generation block generates the serial MIB data. The BCH Encoder and PBCH Encoder
generate information for PBCH channel and memory addresses for all the antennas. The CellRS
Chain generates cell-specific reference signals and corresponding addresses for each antenna. The
Read Write Logic writes and reads the grid data from each LTE Memory Bank and provides the
data to the corresponding LTE OFDM Modulator. The Discrete FIR Filter HDL Optimized filters
the modulated data using coefficients that are calculated based on the input configuration.

5-105

5 Reference Applications

‘Writes PSS 555, PBCH and Cellreference signals datainthe
‘memory and reacts the data based on reacy from LTE OFDM.
Moduiatar and provides grid cata alang with valc.

S
5]
. | | ulated in initialization
. . =
P . - laa)
NDLRB =1
- . . Cid
- ._ = o
celEnb oL Discrete FIR Filter
_1D e Sranied
. T s ”
. S = . L
o -
B = £ -
Y
=5, = dd
L ' = ' -~
€}
5 pic2 |
) N
s | » oo i B e T D
— n]
colRssiart ———»< [oslRSSari] ..D.. "8 4,—» pheh2 orid_vab)) . —
L e :
s G = e
L————» comven an
=] e I i
=l =1 pocit)
] [reset] 'OFDM Modulstor and Filtering2
(2] Gl ()
"
& -
) s per l .@
boh_ader| - i " e B
o] ». IR ou
[— s
boolean ; [N
puch e
P 4
M LE)
N behstart s 'OFDM Modulstor and Filtering3
WIS generaton ‘BCHEncodar PBCH Encoder
) Foot
Le{noure =] [
i
E e,
ol s =
laa] F
[romeen > e)
RS G

Frame Controller

This subsystem assumes an input sampling rate of 10.24 MHz. It controls the subframe and radio
frame boundaries by providing cellEnb signal to sample NCellID. It returns radio frame and subframe
indices. It also provides syncStart, bchStart, and cellRSStart trigger signals to control the
downstream blocks.

5-106

LTE HDL PBCH Transmitter

Assumes input (@ 10.24 MHz. Provides 'syncStart’, ‘bohStart” and ‘cellRS5tart trigger signals for

P55 & 555 Chain, BCH Encoder and CellRS Chain subsystems. Also provides cellEnb to Input

sampler to sample the input NCalllD. Controls subframe and radio frame (nf mod 4) boundaries by
“ding its indi

.-.
>

rst

atart

count

pariodcity = 10 ms

h

== 102390

L

count

end

— ==10 EE—

cellEnb

syncStart

PSS & SSS Generation

bocleas
periodicity = 3 ms
| st count | ==511%0 -"'.
boolean
| st
——
£ = count
| rst count »| ==10239 B enly
boolean boolban

cellRS5Start

This subsystem generates the primary synchronization signal (PSS), secondary synchronization signal
(SSS), and respective write addresses for LTE Memory Bank based on inputs NDLRB and NCellID.
syncStart triggers the generation of PSS and SSS. The PSS and SSS occupy the same central 62
subcarriers of two OFDM symbols in a resource grid [1]. This subsystem generates both the signals
and their corresponding addresses at the same time, so that a single stream of both PSS and SSS can
be written to all the LTE Memory Banks corresponding to each antenna simultaneously.

The PSS sequence is generated from a frequency-domain Zadoff-Chu sequence [1]. The Zadoff-Chu
root sequence index depends on NCellID2, which is derived from NCellID. There are three possible
NCellID2 values, so all possible PSS sequences are precalculated and stored in PSS _LUT.

PSS_generation: Determines NCellID2 and reads the corresponding PSS sequence out of
PSS LUT sequentially.

PSS _indices: Computes the memory addresses required to write PSS data into LTE Memory
Bank. This subsystem is equivalent to the LTE Toolbox™ function 1tePSSIndices.

5-107

5 Reference Applications

= e
MOLRB

MDLRE and =fldx to 'Read Writa Logic
subsystem
2y g HCalID
NC=IID
rddata p| dataln MDOLREo w1
NDLRBo
sfldx =2)
=2 p| starti | NOLRE sfldx
start
s L —> @
pss
rd_walid | valid
- | subframelds wr_addr —»
subframaldx P
= P start pss_addr
PS5 _generation wr_bank F——m
—h.—
| subframeldx pea_vakd ’ -
p==_valid
'
P55_indices
Dalays to match Write addrass

and bank number to that of 555
for writing inte memaory at same time.

The SSS sequence is an interleaved concatenation of two 31-bit length binary sequences. The
concatenated sequence is scrambled with a scrambling sequence given by PSS. The combination of
these sequences differs between subframe 0 and subframe 5[1]. The indices m0 and m1 are derived
from the physical-layer cell identity group, NCellID1 [1]. These indices and the sequences s(n), c(n),
and z(n) are calculated and stored in m@ LUT, m1 LUT, S LUT, C_LUT, and Z LUT respectively.

* SSS_generation: Computes m0 and m1 based on the NCellID and calculates indices required for
sequences s(n), c¢(n), and z(n) based on the subframe index. Generates SSS sequence as specified
in[1]

* SSS_indices: Computes memory addresses required to write SSS data into LTE Memory Bank.
This subsystem is equivalent to the LTE Toolbox™ function 1teSSSIndices.

5-108

LTE HDL PBCH Transmitter

02— #{ncein
NCellD
ESE | dataln 55— :]
533
| : —®{NOLRE wWi_addr F—— =
[3 } EE NOLRB
start { :]
=55 addr
I valid wr_bank ——
555_wald
(4 | subframeldx | start se5Yakd —h@
subframeldx s55_wvalid
i I N
555 _generation P subframeldx EOT @
- EQT
555 _indices

‘pbchread’ enakble reading of PECH data
during nfmod4 = 0 (radie frame index mod 4)

BCH Encoder

Broadcast Channel (BCH) processes the MIB information arriving to the block in the form of a
maximum of one transport block for every transmission time interval (TTI) of 40 ms. The block
implements the following coding steps.

MIB Inputs @ 10.24 MHz ‘Serilaizar serializas tha ancodad output

. ’) 4.-
mib
LTE CRC Encoder LTE Convalutional
Encoder
- boolean .
Py “ il o oofean
erializer

Rate matching inputs @ 30.72 MHz

el

Rate Matching

start trigger signal PBGH Encodar

R ke

valid

signals based

* CRC Encoding: The entire transport block is used to calculate the CRC parity bits for a
polynomial specified in [2]. The parity bits are then appended to the transport block. After
appending, CRC bits are scrambled according to the transmit configuration. The LTE CRC
Encoder block uses the CRC mask set by the l1tehdlTransmitter init.m script based on the
input configuration.

5-109

5 Reference Applications

* Channel Coding: The LTE Convolutional Encoder block encodes the information bits using tail-
biting convolutional code with constraint length 7, and polynomial Go = 133, G1 = 171, G2 = 165
in octal. Because the coding rate of the encoder is 1/3, the coded bits are then serialized using a
Serializer1D (HDL Coder) block and control signals are resampled to 30.72 MHz (3 * 10.24 MHz).

* Rate Matching: The coded bits are interleaved, followed by selection of bits for a particular
length using an interleaved address [2]. For broadcast channel, because the length of the MIB is
constant, interleaved write and read addresses are precalculated and stored in wr_addrLUT and
rd addrLUT respectively. Once all serialized coded bits have been written into interleaved
addresses of RAM, the bits are read back using interleaved read addresses.

1 ¥ -“—‘. | wr_din
data
1-D T[k]
wr_addr 2 | wr_addr
] starti
rd_dout -—f :)
wr_addrLUT -
<gtar= Wwr_en o ea? WI_en
@_b e . 1-D T[k]
cirl ReadWriteController
rd_addr e | rd_addr
<yalid=>
Sample Contral
Bus Selector o] validi rd_addrLUT RAM
walido

- -
{2]
Read Write Contrallar " . " .
walidOut

PBCH Encoder

The physical broadcast channel processes the coded bits in the following steps.

cifc saquer

in PECH_F
- 7) {2
\BLRa
— Lo Y] S
- Y .. _. N b
NCalD —
oL
NGatD2
rit etz @)
poche
. | Pttt
. w1 ot
behin dataOut! | datalni
= P
pehin LTE Symbal Modulator Porgil -- dsta0uz -. datain2 il @D
ey . : pocha
| h. = h. s
validin
> valid I
. =] L] =] o@D
start il poeh
[Sy e = a il 1
e ——— [wr_addr |
Cayor Mapping Fracoding -
- wr_adds n
= . . =
(; L psfldc wi_en e it dataind
- d_addr @
‘ pbch_addr
ReadWriteControler FBCH_RAM
e oy
- »] »] bank
EB ’_. vaiin” " [wr_bark
| - .
0 N N
@ [='] =] TR
pochresd
o ~@
h. h. h. h. phchVald

5-110

LTE HDL PBCH Transmitter

Scrambling: Coded bits from BCH Encoder are scrambled with a cell-specific sequence using a
LTE Gold Sequence Generator block. The sequence is initialized with NCellID in each radio

frame(™f) fulfilling ™/ odd =0 The generated cell-specific sequence is scrambled with the input
coded bits.

QPSK Mapping: The modulation scheme specified for PBCH channel is QPSK [1]. The LTE
Symbol Modulator block generates complex-valued QPSK modulation symbols.

Layer Mapping: Three subsystems are defined for the layer mapping. These subsystems are
placed inside a variant subsystem. Based on the number of antennas used in the input
configuration enb.CellRefP, the LtehdlTransmitter init.m script selects one of the three
subsystems in the variant subsystem. This Layer Mapping block separates the input streaming
samples into 1, 2, or 4 sequences based on the number of antennas used. The input is streamed
out without any processing for a single antenna. For multiple antennas, this block generates a
valid signal for each antenna. Only one of the valid signals will be high for each input sample.

Precoding: This block also uses variant subsystem to process input samples differently based on
the number of antennas in the transmitter configuration. For enb.CellRefP set to 1 the input is
streamed out without any processing. For enb.Cel1RefP set to 4 (or 2), every four (or two)
consecutive samples X0, X1, X2, X3 (or X0, X1) are processed to generate four (or two) streams of
4 (or 2) samples each in four (or two) time instants.

The subsystem shown generates the output sequence for 4 antennas as specified in [1].

Output Sequence: {outsut o Precoaing ma, ransme averst)

1
E
3=s
rt

0
X2

0
canj(-X3)

e matrex autpul by

x1 X0

0 o

con(XD) coni(-X1)
Q [

D
g—a e
valli , |, validOut

Memory: Complex modulated symbols corresponding to the physical broadcast channel for the
initial radio frame are stored in PBCH RAM. For four consecutive radio frames, the number of bits
to be transmitted on the physical broadcast channel is 1920 for normal cyclic prefix and 1728 for
extended cyclic prefix. The Read Write Controller controls read and write addresses based on

nymoidd gince the periodicity of the broadcast channel (BCH) is 40 ms.

PBCH Indexing: Computes the memory addresses required to write PBCH data into LTE Memory
Bank. The PBCH_indices subsystem is equivalent to the LTE Toolbox™ function
1tePBCHINndices.

5-111

5 Reference Applications

(€D

Address |ocations for PBCH for both Normal and Extended GF types

‘of PBCH data in resource grid

NCelllD2

using locations for NDLRB = 6 and NCeillDZ =0, _
. ‘Selacts one of 3 possible address location

NDLRB

(€D

NDLRB

alart resatNoneReg

PBCHAddr

Address for NCellld2 = 0 "
wr_bank

start

stant

Addsass for NCellld2 = 1 . wi_addr
Reg P .
PBCH addr —
’ +
1 1

enb
validin
enl

&

walidln

adpustidx

— Address.
=t
SGen boolean FarNCENEZ=3 |,
=
enb
J fpoclean Extract Bit 0

—e
wr_valid

CellRS Chain

The cell-specific reference sequence is complex modulated values of a pseudo-random sequence as

d

efined in [1]. The pseudo-random sequence generator is initialized with Tinit at the start of each

OFDM symbol,as specified in [1].

CellRS_generation: Input cellRSStart triggers the generation of CRS signals. Since the CRS is
available in six OFDM symbols (four OFDM symbols in antenna port 0 and port 1, and two OFDM
symbols in antenna port 2 and port 3) of a single subframe, this subsystem calculates a 6-element
“init vector for every subframe. The LTE Gold Sequence Generator block is initialized with vector
Cinit to represent multiple channels and provides six different cell-specific pseudo-random
sequences. The Write Controller controls writing of these sequences into six memory banks in
CellRS_RAM. It also returns rd en, which enables reading data out of Cel1RS RAM. The Read
Controller controls reading of CRS data. It reads six OFDM symbols if four antennas are used, and
reads only 4 OFDM symbols if one or two antennas are used. It returns rd bank and rd valid
signals to select an appropriate symbol for the six/four OFDM symbols. The sequence is then
mapped to complex QPSK modulated symbols.

CellRS _indices: This subsystem computes the addresses for each LTE Memory Bank required
to write CRS data. It is equivalent to the LTE Toolbox™ function 1teCellRSIndices.

Cell-specil fora subframe, written into CellRS_RAM
Once writing of sequences in ta memory completed, Write Controller enables Read Contraller
to read data from CellRS_RAM and select the appropriate sequence. The sequence then
‘mapped to complex QPSK modulated symbols.

wr_datat _datal

@&

NCelliD

r_data? "_data2

"_data3 data

dol_oul datn @

cellRS

eeeee

_datst Nbank LTE Symbal Modulator
Latency = —

wr
wr
wr_ "_datad
wr
wr

"_datat

valid_out » walid (2

g rd_enf ’—> d_adelr X - (ED)
55 'Write Controller . d_enb rd_adidr | CellRS _RAM valid cellRS_valid

€D

NDLRB

5-112

. . . - -

Bank Select Symbal Modulatar
B Nt S =]
4‘—’ ReadController

Read Cantrollar

Read Write Logic

LTE HDL PBCH Transmitter

The Read Write Logic subsystem contains a Write Selector, Read Selector, four LTE Memory Banks
with a Grid Bank Select associated with each of the LTE Memory Bank. The LTE Memory Bank
storage capacity is one subframe of complex modulated symbols at the largest supported LTE
bandwidth (20 MHz). Each LTE Memory Bank can store 14 x 2048 x 16-bit complex values, that is, 14
OFDM symbols, each containing 2048 complex values.

The Write Selector writes subframes of data into the memory banks. The PSS and SSS occupy central
subcarriers. A single stream of PSS and SSS data is used for all the antennas. The PBCH data consists
of multiple streams corresponding to each antenna port. The CRS data generated is mapped to the
grid based on the four addresses generated for each LTE Memory bank in CellRS_indices block.
The Write Selector first writes PSS and SSS simultaneously into corresponding locations in all LTE
Memory Banks. Then, it writes PBCH data and CRS data into the corresponding LTE Memory Banks
and returns rd_enb to indicate that the write is complete.

The Read Selector reads the samples from each LTE Memory Bank based on rd enb and ready from
the LTE OFDM Modulator block. Each LTE Memory Bank returns a 14 element vector corresponding
to a single subcarrier. The Grid Bank Select selects the appropriate sample from the 14 element
vector to form the resource grid output for each antenna.

Since the scope of this example is limited to PSS, SSS, CRS, and PBCH transmission, all the LTE
Memory Banks are erased at the start of every subframe, before writing new data into the memory.

5-113

5 Reference Applications

@~
pss
grid] p————
pss_addr E‘. P datalni
wr_datal —I
.—D pae_valid
pss_valid
.)
grid_valid
5e5_addr
s55_addr
» | dataln2
.—P 585_valid
ss&_valid
giiz————» @D
.—D phchl dataz gnd2
wr_dal
pbch -
@
pbch2
L‘. | wir_addr
[e ¢ grid_vasiz |—— (@B
pbchd grid_valid2
WiiteSelector
@
pbch4
<wr_addr, wr_bank>
pbch_addr
vl @D
wr_addr ey
pbch_valid | rd_addr gn
phech_valid
-—D calirs
cellrs
callrs_valid grid_vakd3 4»-
cellrs_walid arid_valid3
.—D celirs_addr
-
cellrs_addr E‘. E‘- g
NOLRBo
sfidx make the signal
sfldx rd_enb into vector of 14 gridd » -
arid4
erase | peat
E—
rd_snb rd_addr —».—» oo
Airh
valid
Write Selector grid_vahidd 4»-
ao [BNDLRE rd_hank —’.7 'r grid_validd
NOLRB
ReadSelactor T e
@ N T _.. amery B
start

Read Selector generates erase trigger signal at the end of every subframe.
Write Selector erases the memory bank upon erase trigger signal untill the

walid data arrives at input ports.
- =‘.. il

ready

Read Selecior

OFDM Modulation and Filtering

Grid data from LTE Memory Bank is OFDM-modulated using the LTE OFDM Modulator block with
'Output data sample rate' parameter set to 'Match output data sample rate to NDLRB'. The
modulated data is filtered using a Discrete FIR Filter HDL Optimized (DSP System Toolbox) block
with coefficients generated at a sampling rate corresponding to the NDLRB. Variant subsystems
control the number of OFDM modulators and FIR filters used based on the number of antennas,
which reduces the resource utilization when a single antenna is used.

5-114

LTE HDL PBCH Transmitter

Verification and Results

After running the simulation, the L1tehd1lTransmitter PostSim.m script is executed automatically
by the StopFcn callback of the model. In this example, the transmitter output is verified by the
following methods:

Verification of model's transmitted signal:

The transmitter output signal in this model is cross-verified with a reference transmitter signal that is
generated using LTE Toolbox™ functions by the following two subplots for each antenna.

1 The first subplot shows the Power Spectral Density (PSD) output of the filtered data. The result is
compared with the PSD of the reference output signal generated using LTE Toolbox™. This
comparison shows the equivalence of the two signals. The figure shows a transmission bandwidth
of BW = 1.4MHz.

2 The second subplot shows the absolute-value of the transmitted waveform. The result is plotted

on top of the absolute-value of the reference transmitter signal generated using LTE Toolbox™.
The plot also shows the difference between the samples obtained through HDL implementation
and the reference signal. This comparison shows the minimal error between the two transmitter
signals.

Y

File Edit View Insert Tools Desktop Window Help

Jdde |2 0E| L E
PSD of OFDM modulated LTE signal PSD of OFDM modulated LTE signal PSD of OFDM modulated LTE signal PSD of OFDM modulated LTE signal
(BW = 1.4 MHz) (BW = 1.4 MHz) (BW = 1.4 MHz) (BW = 1.4 MHz)

(port number : 3/4) (port number : 4/4)

(port number : 1/4) (port number : 2/4)

50 -50 -50 50

-100 -100 -100 -100

PSD (dB)
PSD (cB)
PSD (dB)
PSD (dB)

-150 -150 -150 -150

-200

LTE Toolbox reference
— — — HDL Implementation

=200

LTE Toolbox reference
— — — HOL Implementation

-200

LTE Toolbox reference
— — — HDL Implemantation

-200

LTE Toolbox reference
— — — HDL Imple mentation

-

0.15

Magnitude

0.5 0 0.5
Frequency (MHz)

1

-1

0.5 1] 0.5
Frequency (MHz)

1

-1 0.5 1]

0.5
Frequency (MHz)

1 =

0.5 0 0.5 1
Frequency (MHz)

LTE Toolbox reference

— — —HDL Implementation
Difference

2 4 6 8
«10*

No of Samples

Magnitude

LTE Toolbox reference
— — —HDL Implementation
Differance

2 4 6 8
x10*

No of Samples

Magnitude

0.15

01

0.05

LTE Toolbox reference
— — —HDL Implemantation
Difference

0.15

No of Samples

x1

0.1

Magnitude

0.05

D‘l

I
LTE Toolbox reference
— — —HDL Imple mentation
Difference

L0 0 0 A ST 0
2 4 6 8
No of Samples .. 1p*

Cell Search & MIB Decoding Results:

The valid samples of the transmitter output signal are stored to the workspace variable txSamples.
These samples are passed through an LTE fading channel to create the receiver input signal,
rxSamples. The lteFadingChannel (LTE Toolbox) function models the LTE fading channel.

5-115

5 Reference Applications

5-116

This example uses the following channel configuration:

chcfg.NRxAnts = 1;

chcfg.MIMOCorrelation = 'Medium’;

chcfg.NormalizeTxAnts = 'On';

chcfg.DelayProfile = "EPA'; % {'off', 'EPA'}
% The below model configuration exist only if Delay profile is not set
% to 'off'.

chcfg.DopplerFreq = 5;

chcfg.SamplingRate = 30.72e6;

chcfg.InitTime = 0;

chcfg.NTerms = 16;

chcfg.ModelType = 'GMEDS';

chcfg.NormalizePathGains = 'On';

chcfg.InitPhase = 'Random';

chcfg.Seed = 1;

To create a fading-free channel, set the chcfg.DelayProfile to 'off' in the
ltehdlTransmitter PostSim.m script.

This channel configuration works with the default enb structure, and supports changes only in the
enb.PHICHDuration and enb.Ng fields.

The following figures show the results of the cell search and MIB decoding of the channel output,
rxSamples, using LTE toolbox™ functions. These figures verify the transmitter performance and
compare the HDL transmitter implementation against the input configuration defined in tx cellids
and enb.

* NCellID after Cell Search: Displays the LTE cell search results performed on the fading channel
output.

"y

MCelllD after Cell search (Number of Tx Antennas = 4):
RadicFrames 1
Detected: 300 Expected: 390
RadioFrames# 2

Detected: 88 Expected: B9
RadioFrames# 3
Detected: 501 Expected: 301
RadioFrames# 4
Detected: 231 Expected: 231
RadioFrame# 5
Detected: 500 Expacted: 500

LTE HDL PBCH Transmitter

* Cell-wide settings after MIB decoding: Displays the fields of MIB after MIB decoding - NDLRB,
Ng, PHICH duration, and System Frame Number (SFN) performed on the fading channel output.

ing Results — by

PHICH Dwuraticn: Mommal
Ng: Sixth
SFMN: O

The example model does not support simulation in rapid accelerator mode.

Validation with Cell Search and MIB Recovery Example

You can verify the LTE HDL PBCH Transmitter example by connecting it to the “LTE HDL MIB
Recovery” on page 5-92 example model and checking that the output of the transmitter is decoded
correctly. To make the transmitter model compatible with the receiver model, make these changes to
the transmitter:

* Set the outRate = 2 (default value 1) before running the model. This will set the output rate of
each LTE OFDM Modulator and generate the fir filter coefficients associated with each
antennas.

* Setthe enb.CellRefP = 2 (default value 4) before running the model.

* Use the same NCellID for all radio frames in the transmission. i.e. set tx_cellids to a scalar
value in the range 0-503.

T P yin) =a1*x1{n) + a2*x2(n| T
I LTE HDL PBCH Transmitter l 2 | e arch an ecovery I

al=a2=1/8

[
Simple Channel

sfix16_Eni3lic)

fixE
o
sfix16_En13 (£) [|double (£] Iboclean
e 16_En13 (c] (4) 'Iﬂl datain o TOOMude
b ELCACRENETE!
————=
CeliD)|
sh1_End3)
NDLRB
| cnable boalean validin
PHICH| boalea
boolean (4]
bealean
Tk, o
bealean
—>
Ng
Input data generatian HDL LTE MIMO Transmitter 1 budlean
3

gtartin
Upsample

HDL LTE MIB Recovery

5-117

5 Reference Applications

The figure shows the HDL LTE MIMO Transmitter and HDL LTE MIB Recovery subsystems
connected together. It also shows the result of simulating the model. The display blocks show the
CellID and MIB fields (NDLRB, Ng, PHICH duration and System Frame Number (SFN)) that the
receiver decoded from the output of the HDL LTE MIMO Transmitter subsystem.

You can also verify the design without using a channel by terminating the output from the second
antenna and bypassing the channel system with the output from the first antenna.

HDL Code Generation

To check and generate HDL for this example, you must have an HDL Coder™ license. Use the
makehdl and makehd1ltb commands to generate the HDL code and test bench for the HDL LTE
MIMO Transmitter subsystem. Because the stopTime in this example depends on
TotalSubframes, the test bench generation time depends on the TotalSubframes.

The HDL LTE MIMO Transmitter subsystem is synthesized on a Xilinx® Zynq®-7000 ZC706
evaluation board. The post place and route resource utilization results are shown in the table below.

Resources No. of antennas used =1 No. of antennas used = 2 No. of anten
Slice Registers 12788 23839 457
Slice LUT 11984 22220 428
RAMB36 41 82 164
RAMB18 11 21 41
DSP 49 93 177
Max. Frequency (MHz) 210.08 206.39 204

References

1 3GPP TS 36.211 "Physical channels and modulation".
2 3GPP TS 36.212 "Multiplexing and channel coding".

See Also

Related Examples

. “LTE HDL Cell Search” on page 5-57

. “LTE HDL MIB Recovery” on page 5-92
. “LTE HDL SIB1 Recovery” on page 5-74

5-118

Deploy LTE HDL Reference Applications on SoCs

Deploy LTE HDL Reference Applications on SoCs

((())) Sync & Demod

These examples show how to implement LTE cell search, MIB and SIB1 recovery on Xilinx-based
platforms with hardware-software co-design and hardware support packages.

LTE MIB Recovery and Cell Scanner Using Analog Devices AD9361/AD9364

The “LTE MIB Recovery and Cell Scanner Using Analog Devices AD9361/AD9364” (Communications
Toolbox Support Package for Xilinx Zynq-Based Radio) example shows how to implement an LTE
master information block (MIB) recovery system partitioned across the processing system (PS) and
the programmable logic (PL) of a Xilinx® Zyng® platform with Analog Devices AD9361/AD9364 radio
front end. The example explains how to:

* Generate an HDL IP core for the PL and embedded code for the PS by using the HDL Workflow
Advisor

* Run the MIB recovery design on the radio platform

* Build a cell scanner using the same FPGA bitstream for the PL with a different software model for
the PS

The example reuses the MIB recovery models from the “LTE HDL MIB Recovery” on page 5-92
example. A block diagram of the MIB recovery design is shown.

Frequency PSSSSS& OFDM
1Q data Recavery Detection Demod
@30.72 Msps
y
Indexing Grid Decoding
N Resource Channel
PBCH Indexing Gnd Estimation + PBCH Decode MIB
Buffer Equalization

LTE SIB1 Recovery Using Analog Devices AD9361/AD9364

The “LTE SIB1 Recovery Using Analog Devices AD9361/AD9364” (Communications Toolbox Support
Package for Xilinx Zynqg-Based Radio) example implements a receiver system to recover the first
system information block (SIB1) from an LTE downlink signal using a Xilinx Zynq radio platform that
is partitioned across the processing system (PS) and the programmable logic (PL) fabric. The example
reuses SIB1 recovery models from the “LTE HDL SIB1 Recovery” on page 5-74 example. A block
diagram of the SIB1 recovery design is shown.

5-119

5 Reference Applications

@)

Sync & Demod
Frequency PSSSSS& OFDM —
1/Q data Recovery Detection Demod
@30.72 Msps
Indexing Decoding
PBCH Indexing ! PBCH Decode
Grid
PCFICH Indexing PCFICH Decode
| Resource Channel
o Grid Estimation +
Buffer Equalization
PDCCH Indexing a PDE%"éeE’riﬁOde
PDSCH Indexing PDSCH Decode
DCI Allocation
DCI Parse + Resource
Allocation
See Also

Related Examples
“LTE HDL Cell Search” on page 5-57

5-120

“LTE HDL MIB Recovery” on page 5-92

“LTE HDL SIB1 Recovery” on page 5-74

* SIB1

HDL OFDM MATLAB References

HDL OFDM MATLAB References

This example shows how to model OFDM transmitter, additive white Gaussian noise (AWGN), and
OFDM receiver hardware algorithms in MATLAB® as steps toward developing a Simulink®
implementation for hardware. The HDL. OFDM MATLAB References example bridges the gap
between a mathematical algorithm and its hardware implementation. This example provides MATLAB
references of the HDL OFDM Transmitter, HDL AWGN, and HDL OFDM Receiver algorithms. You can
use these MATLAB references to generate test vectors for verifying the HDL implementation of the
“HDL OFDM Transmitter” on page 5-135, “HDL Implementation of AWGN Generator” on page 4-44,
and “HDL OFDM Receiver” on page 5-151 Simulink models.

Transmitter {Tx] MATLAB HDL MATLAB HDL MATLAB HDL
Configuration OFDM Transmitter AWGEN OFDM Receiver
&
Y v
Verify SNR (dB} Werify Werify
Fy Fy
h
Sirnulink HOL Sirnulink HOL Simulink HDOL
OFDM Transmitter AWEN OFDM Receiver

HDL OFDM Transmitter MATLAB Reference
This section describes the MATLAB reference of HDL OFDM Transmitter.

This MATLAB reference accepts a modulation order, code rate index, number of frames, and data bits
to be transmitted as a txParam structure or array of structures. txParam has these fields.

* modOrder — Specify 2, 4, 16, or 64 for 'BPSK', 'QPSK', '16QAM', and '64QAM’, respectively. The
default value is 4 (‘QPSK").

* codeRateIndex — Specify 0, 1, 2, or 3 for the rates '1/2', '2/3", '3/4', and '5/6' respectively. The
default value is 0 ('1/2").

* numFrames — Specify a positive integer. The default value is 5.

» txDataBits — Specify binary values in a row or column vector of length trBlkSize x
txParam.numFrames. The default value is a column vector containing randomly generated binary
values of length trBlkSize x txParam.numFrames.

Calculate the transport block size (trBlkSize) by using these parameters.

5-121

5 Reference Applications

* numSubCar — Number of subcarriers per symbol

* pilotsPerSym — Number of pilots per symbol

* numDataOFDMSymbols — Number of data OFDM symbols

* bitsPerModSym — Number of bits per modulated symbol

* codeRate — Punctured code rate

* dataConvK — Constraint length of the convolutional encoder
* dataCRCLen — CRC length

trBlkSize = ((numSubCar - pilotsPerSym) x numDataOFDMSymbols x bitsPerModSym x codeRate) - (data

For example, to generate a time-domain OFDM transmitter waveform of 5 frames with a modulation
scheme of 16QAM and code rate of 1/2 using random data bits in the transport block, format the
inputs as structure.

txParam.modOrder = 16; % Modulation order corresponding to 16-QAM
txParam.codeRateIndex = 0; % Code rate index corresponding to 1/2
txParam.numFrames = 5; % Number of frames to be generated

% Calculate transport block size (trBlkSize) using parameters

numSubCar = 72; % Number of subcarriers per symbol

pilotsPerSym = 12; % Number of pilots per symbol

numDataOFDMSymbols = 32; % Number of data OFDM symbols

bitsPerModSym = log2(txParam.modOrder); % Bits per modulated symbol

codeRate = 1/2; % Punctured code rate

dataConvK = 7; % Constraint length of convolutional code polynomial

dataCRCLen = 32; % Data CRC length

trBlkSize = ((numSubCar-pilotsPerSym)*numDataOFDMSymbols* ...
bitsPerModSym*codeRate) - (dataConvK-1) - dataCRCLen;

txParam.txDataBits = randi([0 1],txParam.numFrames*trBl1kSize,1);

% Generate complex baseband transmitter waveform
fprintf('\n----------oi \n');

fprintf('\n Transmitting %d frames ...\n',txParam.numFrames);
[txWaveform,txGrid,txDiagnostics] = whdlexamples.OFDMTx(txParam);
fprintf('\n Transmission successful.\n');
fprintf('\n-----------i \n');

Transmitting 5 frames ...

Transmission successful.

The whdlexamples.OFDMTx function returns arguments txWaveform, txGrid, and
txDiagnostics.

* txWaveform is the generated time-domain waveform and is returned as a column vector of length
((fftLen + cpLen) x txParam.numFrames x numSymPerFrame), where:

1 fftLen isthe FFT length.
2 cplen is the cyclic prefix length.

5-122

HDL OFDM MATLAB References

3 txParam.numFrames is the number of OFDM frames generated.
4 numSymPerFrame is the number of OFDM symbols per frame.

If txParam is an array of structures, then in the expression txParam.numFrames is replaced with
the sum of all numFrames attributes present in the array. The frame structure of the generated time-
domain waveform txWaveform is similar to the Simulink HDL. OFDM Transmitter output waveform.
For the detailed explanation of the frame structure, see the “HDL OFDM Transmitter” on page 5-135
example.

* txGrid is the transmitter grid output and is returned as a matrix of size numSubCar-by-
(txParam.numFrames x numSymPerFrame), where numSubCar is the number of active
subcarriers.

* txDiagnostics is a structure or array of structures and consists of these three fields:

1 headerBits represents the header bits as a column vector of size 14, which includes 3 bits for
the FFT length index, 2 bits for the symbol modulation type, 2 bits for the code rate index, and 7
spare bits.

2 dataBits represents actual data bits transmitted in the given number of frames
(txParam.numFrames). This field is a binary-valued row or column vector of length equal to
(txParam.numFrames x trbBlkSize). Whether dataBits is a row or column vector depends
on the dimension of txParam.dataBits. The default size is a column vector of length equal to
txParam.numFrames x trbBlkSize.

3 ofdmModOut represents the OFDM modulator output as a column vector of length equal to
(fftLen + cpLen) x txParam.numFrames x numSymPerFrame.

OFDMTx

whdlexamples.OFDMTx function is used to generate OFDM transmitter waveform with
synchronization, reference, header, pilots, and data signals. This function returns txwWaveform,
txGrid, and txDiagnostics using transmitter parameters txParam. This function internally calls
these individual functions.

* generate0OFDMSyncSignal — This function generates the synchronization signal SyncSignal.
This function uses Zadoff-Chu sequence with a root index of 25 and length of 62.

* generateOFDMRefSignal — This function generates the reference signal refSignal for the
given FFT length fftLen. This function uses a BPSK-modulated pseudo random binary sequence.

* generateOFDMPilotSignal — This function generates the pilot signal pilot. This function
uses a BPSK-modulated pseudo random binary sequence.

* OFDMSymbolModulate — This function modulates input bits to complex modulation symbols
based on the specified modulation scheme BPSK, QPSK, 16QAM, and 64QAM.

Plot the resource grid of the transmitter waveform. The plot indicates the magnitude variations of
each resource grid element.

plotResourceGrid(txGrid);

5-123

5 Reference Applications

5-124

OFDM Resource Grid
126 T T T T T T T T 1 1 1]
120 | | | | | | | | | | | | a5
114 | | | | | | | | | | | |
108 | | | | | | | | | | | |

80

84 Header
8
72
66 1 Pilat
ED T T T T T T T i i i T

Subcarmier

48 T T T T T T T i i i T i DEtE
42 T T T T T T T i i i T

BD T T T T T T T T T T T DC
24 1 1 1 1 1 1 1 1 1 1 1 4
18 1 1 1 1 1 1 1 1 1 1 1 4

12 4 4 4 4 4 4 4 4 i i i - Gua rd

15 30 45 60 75 080 105 120 135 150 165 180
OFDM Symbaol

HDL AWGN MATLAB Reference
This section describes the MATLAB reference of HDL. AWGN.

This MATLAB reference is used for performance evaluation of the HDL. OFDM Transmitter and
Receiver algorithms. The HDL AWGN MATLAB reference generates AWGN by accepting the signal-to-
noise ratio (SNR) in decibel (dB) and sets of seeds. For more details, see “HDL Implementation of
AWGN Generator” on page 4-44. The generated AWGN is added to the HDL OFDM Transmitter
output.

FFTLen = 128;
CPLen = 32;
usedSubCarr = 72; % Out of 128 subcarriers, 72 subcarriers are loaded with data

SNRdB = 30;

SNRdBSimInput = SNRdB*ones(length(txWaveform)+633,1);
seedsURNG1 = [121 719 511]; % Seeds for TausURNG1
seedsURNG2 = [2343 323 833]; % Seeds for TausURNG2
txScaleFactor = FFTLen/sqrt(usedSubCarr);

awgnNoise = whdlexamples.hdlawgn(SNRdBSimInput,seedsURNG1,seedsURNG2);

rxWaveform = txWaveform + (1/txScaleFactor)*awgnNoise(634:end);
fprintf('\n Applying the AWGN channel at %d dB...\n', SNRdB);

Applying the AWGN channel at 30 dB...

HDL OFDM MATLAB References

HDL OFDM Receiver MATLAB Reference
This section describes MATLAB reference of HDL. OFDM Receiver.

This MATLAB reference includes time synchronization, CFO estimation and correction, OFDM
demodulation, header recovery, CPE estimation and correction, and data recovery.

The whdlexamples.OFDMRx function accepts rxWaveform, a transmitted waveform passed through
an AWGN channel.

The whdlexamples.OFDMRx function returns decoded bits rxBits and an array of structures,
rxDiagnostics, consisting of these eight fields.

* estCFO0 — Estimated carrier frequency offset

* rxConstellationHeader — Demodulated header constellation symbols

* rxConstellationData — Demodulated data constellation symbols

* softLLR — Demodulated soft LLR bits

* decodedCodeRateIndex — Decoded code rate index from header

* decodedModOrder — Decoded modulation order from header

* headerCRCErrorFlag — Status of header CRC

* dataCRCErrorFlag — Status of data CRC

OFDMRx

The whdlexamples.OFDMRx function is used to demodulate and decode the received rxWaveform.
This function internally calls these individual functions.

* OFDMFrequencyOffset — This function estimates the carrier frequency offset based on cyclic
prefix (CP) technique. The cyclic prefix portion of the received time-domain waveform is
correlated to estimate frequency offset.

* OFDMFrequencyCorrect — This function corrects the carrier frequency offset on the received
waveform using the estimated frequency offset.

* OFDMFrameSync — This function synchronizes the received waveform by performing correlation
using the reference signal. This step reduces the intersymbol interference while demodulating the
received waveform.

» OFDMDemodulation — This function converts the time-domain waveform to frequency-domain
waveform for further decoding. The object dsp.HDLFFT is used for HDL implementation of the
receiver.

¢ OFDMChannelEstimation — This function performs the estimation of the channel using two
reference signals. It uses least squares (LS) estimation technique. LS estimates are averaged to
improve channel estimation accuracy.

* OFDMChannelEqualization — This function performs zero forcing (ZF) equalization using the
estimated channel. Then the received waveform that is free of the channel is used for header
recovery and data recovery.

* OFDMHeaderRecovery — This function recovers header information by performing symbol
demodulation, deinterleaving, and Viterbi decoding. The CRC status indicates the success or
failure of header information recovery. This header recovery CRC status is given as an output of

5-125

5 Reference Applications

the receiver to indicate frame loss or recovery. When the CRC check fails, the header CRC status
is 1. Otherwise, it is 0.

* OFDMDataRecovery — This function performs symbol demodulation, deinterleaving,
depuncturing, Viterbi decoding, and descrambling. The function processes the data only when the
header CRC check passes. After descrambling the decoded data, CRC check is performed on the
recovered data bits to indicate if the packet is errored. When the CRC check fails, the header CRC
status is 1. Otherwise, it is 0.

fprintf('\n Receiving process started...\n');
[rxDataBits, rxDiagnostics] = whdlexamples.OFDMRx(rxWaveform);
fprintf('\n Reception completed\n\n');

% Plot constellation of header and data
scatterplot(rxDiagnostics.rxConstellationHeader(:),1,0,'b.")
title('Header Constellation')

axisObj = gca;

axis0bj.XColor 'w';

axisObj.YColor

scatterplot(rxDiagnostics.rxConstellationData(:),1,0,'b.")
title('Data Constellation');

axisObj = gca;

axis0bj.XColor 'w';

axisObj.YColor

Receiving process started...

Estimating carrier frequency offset ...

First four frames are used for carrier frequency offset estimation.
Estimated carrier frequency offset is -1.913549e-01 Hz.

Detected and processing frame 5

Header CRC passed
Modulation: 16QAM, codeRate=1/2 and FFT Length=128
Data CRC passed

Data decoding completed

Reception completed

5-126

HDL OFDM MATLAB References

Header Constellation

g
=]
=
o
o
5|
j.
&

08 06 D4 02 0 0.2
In-Phase

5-127

5 Reference Applications

Data Constellation

g
=]
=
o
o
5|
j.
&

0
In-Phase

Verify Simulink Model with MATLAB Reference

In this section, the Simulink HDL. OFDM Transmitter, AWGN generator, and Simulink HDL. OFDM
Receiver implemented in fixed point are compared with the equivalent MATLAB HDL reference
models implemented in floating point.

The Simulink model consists of an OFDM Transmitter that generates a time-domain waveform for a
user-defined modulation order and code rate. The time-domain waveform is then passed through the
AWGN channel that introduces AWGN noise of the desired SNR in dB. Then, the OFDM Receiver is
used to demodulate and decode information bits. The outputs of the Simulink model are verified with
the MATLAB reference at each stage.

open HDLOFDMTxRx;
sim HDLOFDMTxRx;

Starting serial model reference simulation build

Successfully updated the model reference simulation target for: whdlOFDMRx
Successfully updated the model reference simulation target for: whdlOFDMTx
Build Summary

Simulation targets built:

Model Action Rebuild Reason

whdlOFDMRx Code generated and compiled whdlOFDMRx msf.mexw64 does not exist.
whdlOFDMTx Code generated and compiled whdlOFDMTx msf.mexw64 does not exist.

5-128

HDL OFDM MATLAB References

2 of 2 models built (0 models already up to date)
Build duration: Oh 10m 34.671s

HDL OFDM Transmitter and Receiver

OFDM Transmitter AWGN Channel OFDM Receiver

nDsiaCRCPas|
Diagnosto Decoder

o e 3
o . -
P

Verify Simulink HDL. OFDM Transmitter with MATLAB HDL OFDM Transmitter

In this section, plot the real and imaginary parts of the HDL. OFDM Transmitter MATLAB reference
function output txWaveform and compare with the output of the “HDL OFDM Transmitter” on page
5-135 block.

matlabTxWaveform = txWaveform;
simulinkTxWaveform = simTxOut;

figure;

plot(real(matlabTxWaveform),'-bo")

hold on
plot(real(simulinkTxWaveform(1l:length(matlabTxwWaveform))),'-r.")
legend('MATLAB Tx waveform', 'Simulink Tx waveform');
title('Comparison of MATLAB Tx and Simulink Tx (Real Part)');
ylim([-0.2 0.2]);

xlabel('Time-Domain Samples');

ylabel('Amplitude');

figure;

plot(imag(matlabTxWaveform),'-bo")

hold on
plot(imag(simulinkTxWaveform(1l:length(matlabTxwWaveform))),'-r.")
legend('MATLAB Tx waveform', 'Simulink Tx waveform');
title('Comparison of MATLAB Tx and Simulink Tx (Imaginary Part)');
ylim([-0.2 0.2]);

xlabel('Time-Domain Samples');

ylabel('Amplitude');

5-129

5 Reference Applications

5-130

Comparison of MATLAB Tx and Simulink Tx (Real Part)

0.2

Amplitude
o

—S— MATLAB Tx waveform

Simulink Tx waveform

1 15 2 25 3
Time-Domain Samples %104

HDL OFDM MATLAB References

Comparison of MATLAB Tx and Simulink Tx (Imaginary Part)

0.2

P Po | —S—MATLAB Tx waveform
P o P gl 4 Simulink Tx waveform
g FIF T B

Amplitude
=

0 0.5 1 15 2 25 3
Time-Domain Samples %104

Verify Simulink HDL. AWGN Generator with MATLAB HDL AWGN

In this section, plot the real and imaginary parts of the MATLAB HDL AWGN is compared with the

output of the Simulink AWGN Generator block.

matlabChannelOut= rxWaveform;
simulinkChannelOut = simChannelOut;

figure;

plot(real(matlabChannelOut),'-bo');

hold on;
plot(real(simulinkChannelOut(1l:length(matlabChannelOut))), " '-r.");
legend('MATLAB channel output','Simulink channel output');
title('Comparison of MATLAB Channel and Simulink Channel (Real Part)');
ylim([-0.2 0.2]);

xlabel('Time-Domain Samples');

ylabel('Amplitude');

figure;

plot(imag(matlabChannelOut),'-bo');

hold on;
plot(imag(simulinkChannelOut(1l:length(matlabChannelOut))), " '-r.");
legend('MATLAB channel output','Simulink channel output');

title('Comparison of MATLAB Channel and Simulink Channel (Imaginary Part)');

ylim([-0.2 0.2]);

5-131

5 Reference Applications

xLlabel('Time-Domain Samples');
ylabel('Amplitude');

Comparison of MATLAB Channel and Simulink Channel (Real Part)
D2 T T T T T

5y - —=— MATLAB channel output
0.15 4 Pp P Simulinkchanlclutput i
0.1 A
0.05 i
Juk}
=
=
a U 1
E
<L i
-0.054 1
0.1 A
015 F® o P O 4 @ 1
o D @
0.2 ' ' ' ' '
0 0.5 1 1.5 2 2.5 3
Time-Domain Samples x10%

5-132

HDL OFDM MATLAB References

Comparison of MATLAB Channel and Simulink Channel (Imaginary Part)
0.2 o T T T T T

@ P, [—S—MATLAB channel cutput
Y ? 9 o D @l o Simulink channel output

Amplitude
=

0 0.5 1 15 2 25 3
Time-Domain Samples %104

Verify Simulink HDL. OFDM Receiver with MATLAB HDL OFDM Receiver

In this section, plot the decoded bits of the MATLAB receiver as compared with the decoded bits of
the Simulink receiver.

matlabRxOut= rxDataBits;
simulinkRxOut = simRxDataBits;

figure;

plot(rxDataBits, '-bo');

hold on;
plot(simulinkRxOut(1:length(rxDataBits)),'-r.");
legend('MATLAB Rx bits','Simulink Rx bits');
title('MATLAB and Simulink Decoded Bits');
ylim([-0.25 1.25]);

xlabel('Time-domain Samples');
ylabel('Amplitude');

5-133

5 Reference Applications

MATLAB and Simulink Decoded Bits

1.2

—S— MATLAB Rx bits
Simulink FEx bits

=
o

Amplitude
[
I

0.2

0 500 1000 1500 2000 2500 3000 3500
Time-domain Samples

See Also

Related Examples

. “HDL OFDM Receiver” on page 5-151

. “HDL OFDM Transmitter” on page 5-135

. “HDL Implementation of AWGN Generator” on page 4-44

5-134

4000

HDL OFDM Transmitter

HDL OFDM Transmitter

This example shows how to implement an OFDM-based wireless transmitter in Simulink® that is
optimized for HDL code generation and hardware implementation.

This example shows the custom design of an orthogonal frequency-division multiplexing (OFDM)
based transmitter. This transmitter model accepts payload data through the input port. It enables you
to choose the modulation type and the punctured convolutional code rate of the data from a set of
values. These two parameters control the effective data rate of transmission and are provided
through the input ports of transmitter. The maximum data rate supported by the transmitter is 3
Mbps. The transmitter also accepts an input valid signal to control the transmission.

The transmitter in this example works in conjunction with the receiver in the “HDL OFDM Receiver”
on page 5-151 example. The transmitter has a MATLAB® floating point equivalent function described
in the “HDL OFDM MATLAB References” on page 5-121 example.

Transmitter Specification

This section explains the specifications of the transmitter related to the OFDM frame configuration
and structure, bandwidth, and sample rate.

The transmitter model accepts two parameters, modTypelndex and codeRateIndex, which allow you
to specify the modulation type and punctured convolutional code rate, respectively, of the data. These
two parameters are explained in the following tables:

modTypelndex

Value Represents Modulation Type

0 BPSK

1 QPSK

2 16QAM

3 64QAM

codeRateIndex
Value Represents Code Rate

0 1/2

1 2/3

2 3/4

3 5/6

OFDM Frame Structure

Every OFDM system has a frame structure that shows the distribution of samples in the frequency
domain across all its subcarriers. The frame structure is as shown in the figure. Each OFDM symbol
is comprised of 72 subcarriers, and each OFDM frame consists of 36 OFDM symbols. The frame
duration is 3 ms. The first OFDM symbol is formed by synchronization sequence (SS), second and
third symbols are formed by reference signals (RS), and the fourth symbol is formed by Header. Data
is filled from the fifth symbol to the last (36th) symbol. Pilots are inserted between data such that

5-135

5 Reference Applications

there is one pilot for every five data subcarriers as shown below. These pilots help to detect and
correct phase errors at the receiver.

OFDM Resource Grid

126 | | | | | | | | 5]
102 - - - - - - - - - RS
96
a0
84 Header
. 8
li¥]
= ¥2
® 66 1 Pilat
£ 6o -—
Ul 54 ; ; ; ; ; ; ; e
48 1 1 1 1 1 1 1 7] 1 Data
42 T T T T T T T i
aﬁ T T T T T T T i
30 1 1 1 1 1 1 1 0 oCc
12 } } } } } } } } } Guard
E -
4 8 12 16 20 24 28 32 36
OFDM Symbol

The OFDM parameters used in the model are given below:

Parameter Value
Sample rate 1.92 Msps
Subcarrier spacing 15 kHz
FFT Length 128
Bandwidth of OFDM signal 1.4 MHz
Active Subcarriers 72
Left guard subcarriers 28
Right guard subcarriers 27
Cyclic Prefix length 32
Data symbols per frame 32
Pilots per data symbol 12

Model Architecture

The following figure shows the high-level architecture of the OFDM transmitter. There are five
different signals that form the OFDM frame: SS, RS, Header, Pilots, and Data. SS, RS, and Pilots are
same for every frame. They are stored in separate look up tables (LUT) and accessed whenever
required. Header and Data vary based on the inputs given to the transmitter. Header bits are formed

5-136

HDL OFDM Transmitter

based on the input modulation type and code rate values. These header bits are processed through
the Header chain as shown in the figure. Payload data is provided as an input to the transmitter. This
data is processed through multiple stages in the Data chain. Individual stages in the Header and Data
chains are explained in further sections.

These five signals are multiplexed based on their valid signals and stored in a RAM. The RAM holds
these signals for a duration of one frame. Data stored in the RAM is read out and modulated by the
OFDM Modulator block. The OFDM modulated signal is filtered with a passband frequency of 1.4
MHz and sent out as transmitter output.

Synchronization

Sequence

Reference Signal

Header chain

BPSK Symbol RAM OFDM
Modulator {1 frame) Modulator

Convolutional

Encoder FIR Filter b geo]l\s

Header bits CRC Encoder

JOAEDSIU]

Pilot Insertion
for Data

Data chain

Convolutional
Encoder

Symbol
Modulator

dasnsung

g
]
3
Er
]

data

File Structure
This example contains two Simulink models, an initialization script, and a MATLAB function:

* whdlOFDMTransmitter.slx — This is the top-level model in this example. It has an OFDM
Transmitter subsystem that refers to the whdlOFDMTx . s1x model. There is an external interface
circuit for the OFDM Transmitter subsystem, which provides inputs and collects outputs from the
subsystem. Simulating this model runs the remaining three files.

* whdlexamples.OFDMTransmitterInit — This script initializes the
whd1OFDMTransmitter.slx model. The script is called in the InitFcn callback of the model.

* whdlOFDMTx.s1x — This model implements the transmitter with total configurability.

* whdlexamples.OFDMTxParameters — This function generates parameters required for the
whd1OFDMTx. s1x model. This function is called in the Model Workspace of the model.

Transmitter Interface

The whdlOFDMTransmitter. s1x model shows the OFDM Transmitter subsystem and its interface.

5-137

5 Reference Applications

OFDM Transmitter |

»{ convert "

)
teData txData
mod Typelndex

Capture Tx Waveform

o L
Index Selector comvert

Control Scope

alid

Data and Valid Selactor * I

OFDM Transmitter

[k

5-138

I

Copyright 2020 The MathWorks, Inc.

Model Inputs:

* modTypelndex — Selects the type of symbol modulation to be applied to payload data, specified as
a ufix2 scalar. This port accepts values 0, 1, 2, and 3, which correspond to modulation types BPSK,
QPSK, 16QAM, and 64QAM.

* codeRateIndex — Selects the code rate of punctured convolutional code to be applied to payload
data, specified as a ufix2 scalar. This port accepts values 0, 1, 2, and 3, which correspond to code
rates 1/2, 2/3, 3/4, and 5/6.

* data — Input payload data, specified as a Boolean scalar.

* valid — Valid signal for the input data, specified as a Boolean scalar.

All input ports run at a sample rate of 30.72 Msps to support different configurations.
Model Outputs:

* txData — Transmitter output, returned as a complex scalar with fixdt(1,16,13) datatype sampled
at 1.92 Msps.

HDL OFDM Transmitter

* txValid — Control signal that validates txData, returned as a Boolean scalar sampled at 1.92 Msps.

* ready — Control signal that is used to sample input data, modTypelndex, and codeRatelndex

values, specified as a Boolean scalar sampled at 30.72 Msps.

Index Selector

The Index Selector subsystem samples the modTypelndex and codeRatelndex signals at the rising
edge of the ready signal. The subsystem retains the previous outputs if no rising edge exists on the

ready signal.

This subsystem is active only when there iz a rising edge on the input ready signal. The subsystem selects the Input modOrder and Input codeRatalnd values

modOrder

Input modCrder

codeRatelndex

Input codeRatelnd

Data and Valid Selector

modCrder

codeRatelnd

4

indaxMapper

mod Typelndex

codeRatelndex

for the current frame and outputs corresponding modTypelndex and codeRatelndex values.

>

mod Typelndax

» 2)

Index Mappar

codeRatelndax

The Data and Valid Selector subsystem selects the input payload data and input valid signal based on

the ready signal.

5-139

5 Reference Applications

This subsystem is active anly when the input ready signal is active. The subsystem selects the Input Valid value and outputs the valid signal.

w2

The subsystam also selects the payload data from an LUT based on the Input Valid signal and outputs it as data signal.

I valid data

Payload Data Selector

data

validin

Input Valid

Structure of the Transmitter

The whd1OFDMTX . s1x model is called within the OFDM Transmitter subsystem. It generates an
OFDM transmitter waveform by processing input signals in multiple stages as shown below.

whdlOFDMTx

preambleOut|

modTypelndex

w2

Typeindex

ofdmModin

ofdmModin

codeRatelndex

header

(e

data

o |

ofdmbata

valid

5-140

w

w7

Frame Controller and Input Sampler

Frame Generator

Multiplexer

Repeat

Copyright 2020 The MathWorks, Inc.

Frame Controller and Input Sampler

ofdmbata

ofdmValid

Frame Formation and OFDM Modulation

Discrete FIR Filter
HDL Optimized
Latency =~

Discrete FIR Filter
HDL Optimized

=

ofdmValid

L—»(data dataf—— @D

txData

validf———————————————»

txValid

ready

Indicates that transmitter is ready to accept data

The Frame Controller and Input Sampler subsystem generates control signals for later stages of the
model. The subsystem also generates a ready output signal that is used for external interfacing. This

HDL OFDM Transmitter

subsystem samples the input modTypelndex and codeRateIndex values along with the first valid input
sample. The transport block size for the current frame is selected from the Transport Block Size LUT
based on the sampled modTypelndex and codeRateIndex values. The subsystem also generates
control signals for header generation followed by the preamble generation along with the first valid
sample. Preamble generation refers to the generation of SS, RS, and Pilot signals. The control signal
for data generation is asserted either after 9562 (maximum transport block size corresponding to 64-
QAM modulation and 5/6 code rate) clock cycles from the first valid sample or after the transport
block length of valid input data is stored for the current frame, whichever is later. Along with the data
control signal, the ofdmModReady signal is asserted, which indicates the OFDM Modulator block to
start modulation.

l—b dmodTypelndex]|

(@D » 1 | modind modindex » 1 »(3)
modind modIndex
2 ks ¥ codelnd codelndex ¥ =1 »(4
codelnd = = . codelndex
samplelnParam loadSymMod 4>
Input Sampl >
nut sampler loadSymMod
o2 @
45 sampleinParam headerSet
preambleSet » 1 »(1
= preambleSet
Enable Header and Preamble
samplelnParam
€D | valid datavalid z = »(10)
valid — — dataValid
resetRAM = = »
— — resetRAM
dataSet z z! D
— — dataSet
[rBIkSize] »BIkSize ofdmModReady z! Fal »(11D
— ofdmModReady
ready @D
Frame Controller ready
(&> o o2 @D
data = [dataOut
| , / -
I u 1rBIkSize
| L
Transport Block Size LUT

Select transport block size of the current frame based on the modTypelndex and codeRateIndex values.

Frame Generator

The Frame Generator subsystem generates SS, RS, Header, Pilot, and Data signals, which are later
OFDM-modulated. The Generate Preamble Control Signals subsystem that is in the Frame Generator
subsystem, splits the input preambleSet control signal into ss set, rs set, and pilot set control signals,
which generate SS, RS, and Pilot signals, respectively.

Frame Generator/Synchronization Sequence

The Synchronization Sequence subsystem accepts ss set control signal generated from the Frame
Controller and Input Sampler subsystem. It is generated considering the length of SS sequence. The
counter keeps incrementing and returns SS from an LUT. Once ss set becomes inactive, the counter
stops. Output from LUT is upsampled by a factor of 2 to maintain the same sample time as that of the
Header and Data subsystems. Reference Signals and Pilot subsystems operate in a similar way by
storing the sequences in LUTs and accessing them whenever required.

5-141

5 Reference Applications

Access synchronization sequence from LUT.

1-0 Tiu)

| count _‘_,_|_]Jl » z1 > T2 »_ 1)

Upsample

v

8

55 56t

S5 Counter 55 LUT

> 1, ED)

sshalid

Upsample1

Upsampling is done to compenzate the rate change due to Convolutional Encoder
in Header and Data subsystems.

Frame Generator/Header

The Header subsystem accepts modTypelndex, codeRateIndex and fftLenIndex as inputs. A headerSet
signal starts the header formation. The Header Formation function converts the modTypelndex and
codeRatelndex values into their binary equivalents. For example, a modTypelndex value of 1 is
converted into two bits 01. Similarly, codeRateIndex values are converted into two equivalent bits. To
learn more about these indices, refer to Transmitter Specification. fftLenIndex is not configurable
and its value is fixed to 0. It is converted to 000, which represents an FFT length of 128. fftLenIndex,
modTypelndex, and codeRateIndex are represented using 3, 2, and 2 bits, forming a total of 7 bits.
Additionally, 7 spare bits are added, all currently set to 0, forming a total of 14 Header bits.

These 14 bits are processed as shown in the figure. For proper error detection, General CRC
Generator HDL Optimized block pads 16 CRC bits with [16 12 5 0] as the CRC polynomial. The
Convolutional Encoder block encodes these 30 bits, that is 14 + 16, with [171 133] as the
polynomial and a constraint length as 7. The encoding is processed in terminated mode, adding 6 null
bits, that is 7&endash; 1, to the CRC padded data. After encoding, these 36 bits result in 72 bits due
to the 1/2 rate encoding. The output of the Convolutional Encoder block is a two-element vector that
is serialized in the Serialized subsystem using the Serializer1D (HDL Coder) block, leading to rate
transition by a factor 2. The serialized data is interleaved using the Interleaver block with 72 as the
maximum block size and 18 as the number of columns. For more information on the Interleaver block,
see the “HDL Interleaver and Deinterleaver” on page 5-181 example. The interleaved bits are BPSK-
modulated using the LTE Symbol Modulator block to form a Header symbol.

Header bits are formed based on input modTypelIndex, codeRatelndex, and fftLenIndex values. Header bits are then processed through Header chain as shown below.

aaaaa

EEEEEE

aaaaaaa

nn

Frame Generator/Data

The Data subsystem stores input payload data, dataln, and processes it through the Data chain.

5-142

HDL OFDM Transmitter

@—F dataSat data | dataln
dataSet
@ #| modTypelndex start I startin
mod Typelndex data 1)
@—F codeRatelndax data
codeRatelndesx end P =ndin
M loadhiod
loadodulator vald | validin
5 —————————»{rBksize
trBlkSize e > !
4l- dataln e pume
dataln valid 2)
—b- wrEnable TTITpE T | walid
wrEnable
(D ——— Gl loadModulator » loadModulator
reseiRAM Diata and Control Signal Generation Data Chain
Frame Generator/Data/Data and Control Signal Generation
The Data and Control Signal Generation subsystem consists of a RAM, where the input payload data,
dataln, is stored. A dataSet signal reads data from this RAM. This subsystem generates start, end,
and valid control signals for the RAM data. It also selects the puncture vector based on the
codeRatelndex.
_din
dataln
This subsystem gives out payload data bits and comespanding control signals that are to be processed by Data chain. [ectDAM | count _addr
lmafe”“ rd_dout|——» @D
en data
wrEnable e
e count rd_addr
o Store Input Payload Data
tart
= count —blz‘—_1}
dataSet =
Jz] R
o] = @
D
Counter is to be reset when the count reaches (trBIkSize -1). But, as there are two delays in feedback loop,
the counter is made to reset when count reaches (trBlkSize - 3).
JET JZ -
l—l \—1 valid
ED——<_ess) |
trBlkSize
ate 4 punc >
codeRatelndex selPunciies puncVector
Select Puncture Vector
@ >
modTypelndex modTypelnd
loadMod loadModulator

Frame Generator/Data/Data Chain

5-143

5 Reference Applications

The General CRC Generator HDL Optimized block appends a 32-bit CRC to the payload data from the
RAM with [32 26 23 22 16 12 11 10 8 7 5 4 2 1 0] as the CRC polynomial. This CRC-

padded data is scrambled with " + =" + 1 as the polynomialand [1 © 1 1 1 @ 1] as the initial
state. The Convolutional Encoder block encodes the scrambled data in terminated mode with [171
133] as the polynomial and constraint length as 7. The encoded output is punctured using the
Puncturer block with the puncture vector selected in the Data and Control Signal Generation
subsystem. The output of the Puncturer block is a two-element vector and is serialized using
Serializer1D (HDL Coder) block. The resultant data is interleaved in the Symbol Interleaver
subsystem where the Split Data Into Symbols subsystem splits the input data into symbols and each
of these symbols are bit-interleaved using the Interleaver block with 360 as the maximum block size
and 15 as the number of columns. The supported input data symbol sizes to the Interleaver block are
60, 120, 240, and 360 for BPSK, QPSK, 16-QAM, and 64-QAM modulations, respectively. For more
information on the Interleaver block, see the “HDL Interleaver and Deinterleaver” on page 5-181
example. The LTE Symbol Modulator block modulates the interleaved data using the modulation
pattern selected based on the input modTypelIndex.

This subsystem shows the input payload data processed through Data Chain. Puncturer and Symbol Modulator blocks control the effective data rate.

"Ei";f:w* v [@ e R = 4’5—’@
.

5-144

mmmmmmmmmmmmmm

Multiplexer

The Multiplexer subsystem multiplexes the SS, RS, and Pilot signals in the Multiplex Preamble
Signals subsystem and the Header and Data signals in the Multiplex Header and Data Signals
subsystem based on the valid signals generated by the Frame Generator subsystem.

HDL OFDM Transmitter

55

2D
ssValid

rs

D)
rs\alid

pilot

pilotValid

L

ssValid preambleQut

rsWalid

pilot preambleValid

pilotvalid

Fh-.

preambleQOut

Multiplex Preamble Signals

header

D)
header\/alid

data

do
dataValid

header

dataCut
headeralid
data

validOut
dataVvalid

2D
preambleValid

3D
dataOut

Multiplex Header and Data Signals

WD
validOut

5-145

5 Reference Applications

o
g
9:8
g

preambleValid

1650

Frame Formation and OFDM Modulation

The Frame Formation and OFDM Modulation subsystem accepts the preambleData and data signals,
and then multiplexes and writes them into a Dual Rate Dual Port RAM (HDL Coder). This RAM reads
and writes data at different rates. The RAM writes data at 61.44 Msps. The RAM is filled with data
such that it forms an OFDM frame structure as shown in the Transmitter Specification section.

The Dual Rate RAM block stores one frame of signals.

preambleData o A

data

o e —— /

Generate RAM Inputs din B ofdmModin, ofdmModinValid, ofdmData, and ofdmValid signals output few extra samples than expected.
= Discard the exra samples at the end and use the remaining samples for validation.

-
8 dout
constant ofdmModin
o) Ko @D
— ofdmModinValid

9 g
g H
sﬂ~
gl o
£l s
o

3

5-146

K| Datal-
data J
‘OFDM Modulatof i

Latency =~
rsady—‘

The Generate OFDM Modulator Valid subsystem generates a valid input signal for the OFDM
Modulator block at a sample rate of 1.92 Msps and generates a RAM address to read data from the
RAM. The valid signal is in synchronization with the ready signal of the OFDM Modulator. The Make
OFDM Valid Continuous subsystem selects the OFDM Modulator output based on the validIn signal. It
gives out valid OFDM output in the presence of the validIn signal and a dummy OFDM symbol in the
absence of validIn signal.

Generate OFDM Modufator Valid)
ofdmData

Make OFDWI Vald Continuous ofamValid

i

Discrete FIR Filter HDL Optimized

The Discrete FIR Filter HDL Optimized (DSP System Toolbox) block filters the output of the Make
OFDM Valid Continuous subsystem with a passband frequency of 1.4 MHz. The
whdlexamples.OFDMTxParameters function computes the filter coefficients. The output of the
filter is the final output of the transmitter.

Run the Transmitter

The transmitter can be connected back-to-back with the receiver that is explained in the “HDL OFDM
Receiver” on page 5-151 example. For more information on how to use the transmitter and receiver
Simulink models back-to-back, refer to the “HDL OFDM MATLAB References” on page 5-121
example.

To run the transmitter model, OFDMTxVerification.m script is provided with this example. The
script chooses a custom frame configuration, payload data, and simulates the model. The script also
collects the simulation outputs and validates them.

NOTE: These files are not available on the MATLAB search path. To copy these files locally to the
user path, you must open this example.

Verification and Results

In this section, the OFDM Transmitter Simulink model is validated by comparing its output with its
floating point equivalent function, whdlexamples.OFDMTx. For more information on this MATLAB

HDL OFDM Transmitter

function, see the “HDL OFDM MATLAB References” on page 5-121 example. To compare the output
of the Simulink model with the MATLAB function, run the OFDMTxVerification.m script.

>> OFDMTxVerification

Starting serial model reference simulation build
Successfully updated the model reference simulation target for: whdlOFDMTx

Build Summary
Simulation targets built:

Model Action Rebuild Reason

whdlOFDMTx Code generated and compiled whdlOFDMTx msf.mexw64 does not exist.

1 of 1 models built (0 models already up to date)
Build duration: Oh 2m 39.775s

Real Part of Tx Output

— +— —MATLAB Dutput
Y gq P . —5— Simulink Output |
w '

Amplitude

0 2000 4000 6000 8000 10000 12000
Time-domain Samples Count

5-147

5 Reference Applications

Imaginary Part of Tx Output

- — +— — MATLAB Output
dn it —&— Simulink Output | |

Amplitude

0 2000 4000 6000 8000 10000 12000
Time-domain Samples Count

5-148

HDL OFDM Transmitter

Tx Power spectrum

HDL Code Generation

To generate HDL code for this example, you must have HDL Coder™. Use makehdl and makehdltb
commands to generate HDL code and HDL testbench for the OFDM Transmitter subsystem.
Testbench generation time depends on the simulation time.

The resulting HDL code is synthesized for the Xilinx® Zynq®-7000 ZC706 evaluation board. The post
place and route resource utilization is shown in the table below. The maximum frequency of operation
is 230 MHz.

Resources Usage

Slice Registers 6373

Slice LUT 4197
RAMB36 5
RAMB18 15
DSP48 24
See Also
Blocks

Convolutional Encoder | Discrete FIR Filter HDL Optimized | General CRC Generator HDL Optimized
| LTE Symbol Modulator | OFDM Modulator | Puncturer | Serializer1D

5-149

5 Reference Applications

Related Examples
. “HDL OFDM Receiver” on page 5-151
. “HDL OFDM MATLAB References” on page 5-121

5-150

HDL OFDM Receiver

HDL OFDM Receiver

This example shows how to implement an OFDM-based wireless receiver by using Simulink® blocks
optimized for HDL code generation and hardware implementation.

The model shown in this example receives data and decodes it based on the orthogonal frequency
division multiplexing (OFDM). The main purpose of this example is to model a custom HDL OFDM
wireless communication receiver that can recover information in a real-time scenario and supports
data rates up to 3 Mbps. This model enables you to configure parameters: symbol modulation types
such as BSPK, QPSK, 16-QAM, and 64-QAM and code rates 1/2, 2/3, 3/4 and 5/6 through punctured
convolution encoding. This model enables you to control impairments such as carrier frequency offset
(CFO), carrier phase offset (CPO), and rayleigh fading channel, which significantly affect an OFDM-
based communication system.

The receiver in this example works in conjunction with the transmitter in the “HDL OFDM
Transmitter” on page 5-135 example. The receiver in this example has a MATLAB® floating point
equivalent function described in the “HDL OFDM MATLAB References” on page 5-121 example.

Model Architecture

The following figure shows the architecture of an OFDM Receiver. The receiver samples the input at
1.92 Msps. These samples stream into the Rx Filter. The output from the Rx Filter stream into the
Frequency Estimator and the Frequency Corrector. The Frequency Estimator and the Frequency
Corrector estimate and correct CFO respectively and the samples stream into the Synchronizing
Sequence (SS) Detector. The output of the SS Detector is used for the time synchronization. The time
synchronized samples stream into the OFDM Demodulator, which demodulates the input and
generates the frequency-domain subcarriers. The Subcarrier Parser parses the channel reference
subcarriers, header subcarriers, and data subcarriers. The channel reference subcarriers stream into
the Channel Estimator, which estimates the channel frequency response. The Channel Equalizer uses
these estimates to equalize the header and data subcarriers in the frequency domain. The Header
Recovery recovers the header information using the channel-equalized header subcarriers. The CPE
Estimator estimates the common phase error (CPE) in the data sub carriers that get corrected by
CPE Corrector. The Data Recovery uses the header information and the CPE-corrected data
subcarriers to decode the data bits.

Sync Sequence
Detection

Extract
Channel Channel Header Info
Estimator Equalizer

CPE Estimator CPE Corrector y, DataRecovery Info L"_l"‘i""‘
g \ iits

Frequency Frequency

Rx Input Estimator e S5 Detector
Freguency Time OFDM Subcarrier

Corrector Synchronizer Demodulator Parser

\ Symbol
. Demodulator Deinterleaver
Equalizer \ (BPSK)
Output

Viterbi CRC Decoder
Decoder {16 bit Header)

Viterbi
Decader

CRC Decoder
{32 bit Data)

Deinterleaver Descrambler

Output Demaodulator

5-151

5 Reference Applications

File Structure

Two Simulink models and three MATLAB files are used to construct this example.

* whdl0FDMReceiver.slx — Top level OFDM receiver Simulink model
* whdlOFDMRx.s1x — Reference model used by the whd10FDMReceiver.s1lx model

* whdlexamples.OFDMReceiverInit.m — Initialization script for whd10FDMReceiver.slx
initialized in the model's InitFcn callback.

* whdlexamples.OFDMRxParameters.m — Initialization function for whd10FDMRX . s 1x initialized

in the Model Workspace and model's InitFcn callback

* whdlexamples.OFDMTx.m — MATLAB floating-point equivalent transmitter function for
generating a transmitter waveform. The generated transmitter waveform is used in the

whdlexamples.OFDMReceiverInit.m script

Receiver Interface

This figure shows the top-level model in this example.

R Data In

rxValidin

[OFDM Receiver

Rax Valid In

‘ Use intemally estimated frequency offset

| frequencyOffselCarractionType

Frequency Cormection Typs

‘ CFO

“-/\. externalFrequencyOffset

External Fraquency Offsat

CFO must be in Hz

‘ Active

1 onirct

———————
impairmantContr

Channeal Equalization

‘ Active

] GPEComectionControl

>l

CPE Carrection

Model Inputs:

Copyright 2020 The MathWaorks, Inc.

'OFDM Recsiver

dataut

validOut

dstalut

Capture Data Bits

Control Scope

v

headarVaid

i

nHeaderCRCFal

nHeaderCRCPas:

E

4

4

Type

¥

dataVald

nDataCRCFal

nDalaCRCPass
Diagnostic Decoder

1

|

T

il

* dataln — Input data, specified as a complex signed 16-bit signal sampled at 1.92 Msps.

* validIin — Control signal to validate the dataln, specified as a Boolean scalar.

5-152

HDL OFDM Receiver

datal

&fix18_En14 (g}
@D *|de= data
7 rdnputData
in

* impairmentControl — Bus signal to control the channel impairments.

The impairmentControl bus comprises following signals:

* frequencyOffsetCorrectionType — Control signal to indicate whether to select Use internally
estimated frequency offset orUse externally provided frequency offset option
for offset correction, specified as a Boolean scalar.

* externalFrequencyOffset — Real signed 14-bit CFO with range from -7400 Hz to 7400 Hz provided
externally for CFO correction.

* channelEqualizerControl — Control signal to indicate whether to enable or disable channel

equalization, specified as a Boolean scalar.

* CPECorrectionControl — Control signal to indicate whether to enable or disable CPE correction,
specified as a Boolean scalar.

Model Outputs:

* dataOut — Decoded output data bits, returned as a Boolean scalar.
* validOut — Control signal to validate the dataOut, returned as a Boolean scalar.
» diagBus — Status signal with diagnostic outputs, returned as a bus signal.

Structure of the Receiver

The OFDM Receiver subsystem performs a set of operations in a sequence. This subsystem uses the

whd1OFDMRx . s1x reference model. This reference model is initialized in its Model Workspace and in
the model InitFcn callback using the whdlexamples.OFDMRxParameters function. The following
figure shows the top-level subsystems in the reference model.

Perform frequency and time synchronization and
OFDM demodulation to get subcarriers

OFDMDataOut

OFDMValidOut

<hequencyOfiselComectionType>

Offsst

impairCirl

<extemalFrequencyOfiset>

freqEst

Recover header information and data bits using

header information

dataBits

4. o

dataBitsVakid

@

validout

4§ validin
-

headerData

sagtis [@D

headeraid

diagBus.

syncPul

b oynopaise]
N

‘Synchronization and OFDM Demedulation

<CPECamecionConiral

Synchronization and OFDM Demodulation

Channel and CPE Estimation an d Carrection

Header and Data Recovery

Copyright 2020 The MathWorks, Inc.

freqEst
—
Diagnostc Bus Formation

Create bus signal for status signals to monitor
them outside FPGA

The Synchronization and OFDM Demodulation subsystem performs frequency and time

synchronization and OFDM demodulation.

5-153

5 Reference Applications

Estimate and compensate CFO and Generate start and end signals for the frame
perform S§ detection and time boundaries and discard samples outside the
synchronization boundaries
iy dataln dataOut ‘-l z1 dataln
dataln |_| dataOut e ——) data L T —— (1)
ateln ety OFDMDataOut
2) validin wvalidOut| ‘] Z‘ wvalidin OFDM Demodulator
validin boclean |_|
. . , syncPulse . Z“ s validOut R walid valid OFDNVaidout OFH\DM:EIIGIOM
frequencyOffsetCorrectionType
Frame Controller

[freComact freqEst

externalFraquencyOffsst freqEst trigger aut » 3)
Frequency and Time Synchranization MonoStableOneCik raset
Delay by Latency
The Frequency and Time Synchronization subsystem comprises Timing Adjust subsystem and CFO
Estimation and Correction and SS Detection subsystem.
Count the input valid and synchronize the data with the
timingOffset
- 5 | -
. timing ——— | Z° ransferTming > timingOffset y
goD—— ———— &
dataln datatut synchronizedData @
dataOut
n
Lt
) 5 | -
timingVialid ———m Z~ ransferred TrringValid * timingOffsetVahd

boolean
2)————#wldn

T T T

i lidO t4b.—p1
vatdin by synchronizedValid @
walidOut
orrectedData » » dataln
() —
freEstinternal
SyncPulss - S '—N 3)
oIS A\ > Zd » Z‘ | validin synchrpnizedPulse syncPulse
The Delay length must be equal L sy pu
to the searchDuration in Max Timing Adjust
»
Peak Searcher subsystem 2
@) —————»{extFreg NO HOL
freComect ML »(4

freqEst

CFO Estimation and Correction and 55 Detection

The CFO Estimation and Correction and SS Detection subsystem comprises CFO Estimation and SS
Detection subsystem and Frequency Correction Nx subsystem, which perform frequency correction
for the input signal. The estimate from the CFO Estimation and SS Detection subsystem is used for
frequency correction if the frequencyOffsetCorrectionType signal on the top-level model interface is
set to Use internally estimated frequency offset. The externalFrequencyOffset is used for
frequency correction if the frequencyOffsetCorrectionType signal is set to Use externally
provided frequency offset.

5-154

HDL OFDM Receiver

timing »(1)
¥ datal timing
@&
timingValid
#| validin
freqEstTaNxComection »{ 5)
freqEst
CFO Estimation and 55 Detection I

dataOut > 3
frequencyComectedData
frequencyCorrectedData

& >z » ! ¥ valicin
valiclin
e, validOut . »(5)
@ 1 P I |ieq frequencyComectedValid frequencyCorectedValid
fraqCtrl 1
(4 3} » convert g
ExtFraq Frequency Correction Mx
Perform CFO correction
The CFO Estimation and SS Detection subsystem comprises CFO Estimation subsystem, Start
Controller subsystem, Sync Signal Search subsystem, and Frequency Correction 1x subsystem that
perform frequency correction on input signal.
SS detection
CFO estimate becomes stable after 4 frames = 12 ms duration
Performs CFO estimation for 4 frames - e _’l %3
validOut
@ ot M&LWE} u frequencyEstimate e
dataln
1 7 | validin
z ! & | reqEstTolinGamscton "qus‘_%:)mmim
2 7 oo freqEstRegEn
- FreqEstval |:|
= GFO Estimation . Freq Est et LTS ST _’@
searchiHold g-.’z-_i‘ ‘
]

Start Controller

Disables max peak search until CFO is ready
Sync Signal Search

The CFO Estimation subsystem uses the cyclic prefix correlation technique to estimate the CFO of the
input signal. The CyclicPrefixCorrelator subsystem estimates one CFO value for every six OFDM
symbols by averaging all the estimates in six OFDM symbols. The AngleAtMaximum subsystem
selects the strongest correlation peak for every six OFDM symbols and records its phase angle. The
AngleFilter subsystem implements an averaging filter to average all the recorded phase angles for a
duration of 12 ms. The resulting phase angle serves as a final CFO estimate.

5-155

5 Reference Applications

dalzln s I el naginy —— angleOut ¥ angisl angleut f———— ()
datal | freqEst
italn
T N - © angleD s * angley avaidn . aogieVaicou =
S —— | h N * angleOut g anglavai 3
R
validin &
freqEat\Valid
icPrafixComrelator ec r leFilter
8 CyclicPrafixCorral Rect2Pala AnglaAtMaximum Angleril

The Sync Signal Search subsystem implements the SS correlation. SS detection is performed by
continuously cross-correlating the received signal with the SS signal in the time domain. In addition,
the energy of the signal in the span of the correlator is computed on each time step and then scaled
to generate a threshold. The Max Peak Searcher subsystem begins searching for the maximum
correlation peak after 12 ms and searches for every 3 ms time window. The subsystem records the
timing offset of the synchronization. The Start Controller function block indicates to the Max Peak
Searcher subsystem the end of the 12 ms duration.

Perform SS correlation and
generate dynamic threshold

i at — » »| i Iy
S =] L™ -

Upsamgle

= = [
= . thresheid| limingOffsatL » = »l J] Sy »—
EER R B = SimingOffsationg =
Downsample
4
b N
> Tsz =
validin [
Upsampls1
peame! validin done
55PgakSearchDone
D—quumsr ‘ ﬂu["‘ -
table timingOffsetvalid
MonoStable o
p{Ropat
S5PeakDetected
searchHold _‘ = sl

Repeatl

The timing offset recorded at the maximum correlation value by the Max Peak Searcher is transferred
to the Timing Adjust subsystem to synchronize timing.

The OFDM Demodulator block demodulates the synchronized samples and generates subcarriers.
Channel and CPE Estimation and Correction

The Channel and CPE Estimation and Correction subsystem estimates the channel frequency
response, equalizes the channel, performs CPE estimation, and corrects the CPE.

5-156

HDL OFDM Receiver

‘Separate reference Separate header and data
signal subcarriers from subcarriers in the frame
the frame
dataOut| | datal
@D #d=tan FrvalidOut -. »4)
dataCut datal
dataln lataOut pr— headerValid
. '
headerData
cvalidOut| L il
dataOut
@D Hfwin
. IndexG: CPECH
validin nassan
CPECH
detalul t—————— ()
validOut| P validin validOut — va\idln‘ CPEComectedData
channelEqualizedvalid IndeGen dataln CPECorrectedData
validOut| ‘-. | validin
@ e e e a—
. rectedval
resetin sttt | st CPECormectedvalid
GPE Estimation and Corraction
Reference Signal Parsing mmelOLt N
bool
setOut >
_ iogfaforen 2550)
| ChanEquiCtr resstOut
channelEqualizerContral
Channel Estimation and Equalization Header and Data Parsing

The Reference Signal Parsing MATLAB function block separates the OFDM symbols reserved for
computing channel estimates.

The OFDM symbols reserved for computing channel estimates are streamed through Channel
Estimation subsystem. The OFDM Channel Estimator block averages the estimates from the two
symbols and outputs the final channel estimates. The estimates are streamed into the Channel
Equalization subsystem that stores the estimates in a RAM and performs frequency-domain channel
equalization using the OFDM Equalizer block for all the remaining OFDM symbols in the frame.

#{ ChanEquiCtr
ChanEquiCtr
dataOut ' » convert i|
dataOut
dataln
validin
walidOut ' » 2)
valdOut
dataln chanEst] . chanEstin
channslEstimates
(D) validin validOut - . Estvalidin
. channslEstimatesValid
cvalidin
mstut4’. »&D
resatOut
- ' - resetin resetOut] 4’.—b resetin
resetin

Channel Estimation Channel Equalizaton
Estimates the channel frequency Stores the estimate from channel estimation
response for each frame subsystem for each frame and perform

channel equalization

The Header and Data Parsing MATLAB function block separates the OFDM symbols corresponding to
header and data symbols.

5-157

5 Reference Applications

The frequency domain channel-equalized data subcarriers stream through the Common Phase Error
Estimation and Correction subsystem. In the frequency estimation process, there is always a small
estimation error due to the channel impairments. This estimation error results in a residual frequency
offset in the channel-equalized subcarriers. This results a CPE in all the subcarriers in an OFDM
symbol and changes from symbol to symbol. The CPE Estimation subsystem estimates the CPE on
each OFDM symbol using the 12 pilot subcarriers. The pilots are the known subcarriers and any
phase rotation in the received symbols is estimated by using the pilots. The estimates drawn from the
same symbol are averaged to get the final estimate. The symbol is stored in the Symbol Buffer
MATLAB function block during estimation. Once the estimate is ready, the symbol is read from this
buffer block and the CPE Correction subsystem corrects the CPE in the data subcarriers with that
estimate.

Estimate CPE for each OFDM symbol
using 12 pilot sub carriers and average

L1 3 | CPECH]
CPECIHA
dataliut B 1)
dataCut
@—b dataln diatalut | dataln
dataln
v Pilot valid to false
E————————#{validin validOut | validin
walidin
validOut | validin
I rasetin CPEestimate | estimata I e ’ @
= walid Cut
CPE Estimator and Symbsol Buffer CPE Corraction valid Controller
D » 19
reset daklod
Delay by 14

Header and Data Recovery

The Header and Data Recovery subsystem recovers header information and data bits.

5-158

HDL OFDM Receiver

dataCut 1
d of 1 | dataBits C)
Fal Fa >z | dataln dataBits
dataln I_I
startOut —]
dataBitsStart
2} »| 74 » 7 »(71 walidin
validin I_I |_| I_I
@ endOutf——————pf
- dataBitsEnd XOR
madType —
datalut p—— ' In Mositype | modType dataCRCvalid
eaderdi
headerDataln l ut TeaderBiEEEn startin codeRate dataBitsValid
codeRate L
endout . plendin (D) Bt e, @D
headerBitsEnd latchOut dataCRCarror
latehOut #{ header latch
walidin walidOut | validin
d headerBisValid data contellation valid »(_ 8)
hearderlalidin headerEmar dataConstellationValid
headeremor p— | emoris emor * »
eaderCRCamor dats o points N
T —— dataConstellationPoints
I Exiract System Parameters alakonstetatantain
headerConstatationvaid L—— (T Data Recavery
& | reel headerConstallationValid
resat
headerConstellabonData —P
headerConstellationData

dataln

walidin

Header Recovery

The Header Recovery subsystem recovers the header information to decode data bits. The frequency
domain channel-equalized header subcarriers stream into the Header Recovery subsystem. The LTE
Symbol Demodulator block performs BPSK soft symbol demodulation. The Channel Coding subsystem
is equipped with a Deinterleaver subsystem and Viterbi Decoder block. The Deinterleaver subsystem
performs deinterleaving with a maximum block size of 72 and the number of columns as 18. The
Viterbi Decoder block performs 1/2 rate viterbi decoding. For more information about the
Deinterleaver subsystem, see the “HDL Interleaver and Deinterleaver” on page 5-181 example. The
General CRC Syndrome Detector HDL Optimized block uses a 16-bit CRC checksum to validate the
decoded bits from the Viterbi Decoder block. If the CRC checksum fails, the General CRC Syndrome
Detector HDL Optimized block generates an error signal.

7] G
> Z > Z

a0t NES . data0ut ———+(ID)
dataOut
data »| convert
data startOut
<start>
LTE Symbol Damudulamlua“d General CRC
Latency =T Syndrome
headerConstellationData Datector _ endOut ————»(T@0)
. 1 HDL Optimized .
validOut Latency = —
& _“ valid validin endOut »{endin
raady —#——
validOut F———— :
oy |2 validOut
e e Channel Coding
BPSK soft bit 12 . o
rate viterbi decoding validOut validin
demodulation ar——ED
Sample Control headererror

Bus Selector

Header CRC

Performs 16 - bit CRC Detection

The Data Recovery subsystem uses header information to decode data bits. The header information is
stored in the registers. These registers are used to access the header information. The LTE Symbol
Demodulator block performs soft bit BPSK, QPSK, 16-QAM, or 64-QAM symbol demodulation
associated with the modulation type retrieved from the header information. The Channel Coding

5-159

5 Reference Applications

subsystem is equipped with the Deinterleaver, Depuncturer, and Viterbi Decoder blocks. Each code
rate is assigned a predefined punctured vector pattern. Based on the code rate retrieved from the
header information, the Channel Coding subsystem performs deinterleaving and depuncturing
followed by viterbi decoding. For more information on the Deinterleaver block, see the “HDL
Interleaver and Deinterleaver” on page 5-181 example. The decoded bits are streamed through the
Descrambler subsystem. The General CRC Syndrome Detector HDL Optimized block uses a 32-bit
CRC checksum to validate the descrambled bits. If the CRC checksum fails, the General CRC
Syndrome Detector HDL Optimized block generates an error signal.

The LTE Symbol Demodulator
performs BPSK or QPSK or 16 - QAM
or 64 - QAM soft bit demodulation

This function discards ™
data sub carriers, if data contellation valid Perform 1/2 or 2/3 or 3/4 or Perform 32-bit CRC
header CRC fails —@D 5/6 rate viterbi decoding Detection
data contelation points
@—- [o——
headerEmor data0ut}— w22 T data B—r atalin dataout D)
e — =] .
-1 Upsample dataOutb—pf 21 dataln dataOut L2l dstain dataOut
1 —
@—» validin
walidin i = » LTE Symbol N
s valigOutf——» {2 T w LESymbol i Z valicin
Upsamglet startout ———»
packat discard controller startOut
Repeat q
convert pe: ready F—»——] reset startOy startOy stariOn =
320 |
Repeal
Ganaral GRC
yndrome
etector erdOut [————
@i = 7z T = HOL Optmized —
oy Hedllerlatched 32 ancy =
eadar latc
Upsample2
— N it 4.._> enan
32
L= modtype
. Repeats validOut ————
g
GO—rz el validOut
1 modType 1f— p|Repeat
madType sez’ AT 32x Channel Cading
modType Reg Repea2
@z = =
= —f- -,] = = | — o[
codeRate £z x
—* er———»(@ED
codeRate Reg Repeald A
Parameters
Compute parameters

5-160

Data CRC
required for successive

subsystems

Diagnostic Bus Formation

The Diagnostic Bus Formation subsystem creates a bus signal for some status signals of the receiver.
This bus can be used to analyze the receiver when deployed onto the hardware.

The data bits are decoded in the Data Recovery subsystem. The decoded bits stream out of the
receiver and stored to workspace in the Capture Data Bits subsystem in the top-level receiver model.
The Diagnostics Decoder subsystem decodes the source-coded header information and counts the
number of synchronized frames, number of header CRC passes and failures, and the number of data
CRC passes and failures in the bus signal formed in the Diagnostic Bus Formation subsystem. The
Simulink display blocks display the Diagnostics Decoder information.

HDL OFDM Receiver

nFramesSynced P

coutle [203
freqOffsetEstimate g 2303
boclean
header\Valid |
bn:n:nlean'r
sfix16 Enid (c) n
headerPoints # header constelation points
nHeaderCRCFail ' g
nHeaderCRCPass Ld
qdiagBus .
decodedModType P
decodedRate P
boolean
data\alid
bu:u:uleanJ
sfix16_Enid (c) n
dataPoints | data constelation points
nDataCRCFail -
nDataCRCPass P

Diagnostic Decoder

Run the Receiver

Connect the receiver back-to-back with the transmitter in the “HDL OFDM Transmitter” on page 5-
135 example and run the Simulink model. For more information on how to connect the transmitter
and the receiver Simulink models back-to-back see the “HDL OFDM MATLAB References” on page 5-
121 example.

The following files describe a procedure to initialize, generate inputs, run, and verify the
whd10OFDMReceiver. s1lx model using the whdlexamples.0OFDMReceiverInit.m initialization
script. You can choose a custom transmitter waveform and a channel impairment of your choice from
the Custom Frame Configuration section in these files.

* OFDMRxRealTimeSimulationDisplay.m — This script mimics a channel in a real-time scenario.
You can choose any available channel impairment and run the script. The script displays the
outputs and generates plots of estimated frequency offset and SS correlation.

* OFDMRxFadingChannelResponseDisplay.m — This script mimics only the fading channel. You
can choose only the fading channel impairment and run the script. The script displays the outputs

5-161

5 Reference Applications

5-162

and generates the plots of channel impulse response and the comparison of estimated frequency
response with the frequency response, derived from the impulse response.

Note: These files are not available on the MATLAB search path. To copy these files locally to the user
path, you must open this example.

Verification and Results

The whdlexamples.OFDMRx.m script is a MATLAB floating point equivalent of the reference model
whd1OFDMRx . s1x. The Simulink model and MATLAB floating point equivalent script are compared in
the “HDL OFDM MATLAB References” on page 5-121 example.

Run the OFDMRxRealTimeSimulationDisplay.m script to run the receiver.
>> OFDMRxRealTimeSimulationDisplay

Starting serial model reference simulation build
Successfully updated the model reference simulation target for: whdlLOFDMRx

Build Summary
Simulation targets built:

Model Action Rebuild Reason

whdlOFDMRx Code generated and compiled whdlOFDMRx msf.mexw64 does not exist.

1 of 1 models built (0 models already up to date)
Build duration: Oh 7m 6.588s

Number of header CRC failed = 0 per 4

Number of bit errors = 0 per 15208

HDL OFDM Receiver

Estimate (in Hz)

2500

2000

1500

1000

500

Frequency Estimate

|
= rr — Offset estimated -
|J — Offset reference
10 15 20 25
Time (ms)

30

5-163

5 Reference Applications

5-164

Synchronizing Signal Correlation and Threshold

0.7 T
* * * * * * * *
0.6 b
06
5 o] Q
¥
Loat
g —&— Correlation value
= Threshald value
E * 55 detected

Run the OFDMRxFadingChannelResponseDisplay.m script to run the receiver.
>> OQFDMRxFadingChannelResponseDisplay

Starting serial model reference simulation build

Build Summary

0 of 1 models built (1 models already up to date)
Build duration: Oh 3m 14.732s

Number of header CRC failed = 0 per 1

Number of bit errors = 0 per 3162

HDL OFDM Receiver

)

i

Mormalized Phase (x

Magnitude

=
wn

=
in

=

=
(4

Impulse Response

T T T (j> T T T T T
0 2 4 6] 10 12 14 16 18 20
Channel Coefflicients
l T L T l T l T T T T ¢ ? o ¢
1 1 i 1 1 1 1 1 1 {:)
0 2 4 & & 10 12 14 16 18 20

Channel Coeflicients

5-165

5 Reference Applications

Frequency Response

i) i

]

=

=

]

EEU 05+ —&— Dedved from Impulse Response |4
———— [Denved from Simulink Model
—— Error

0 10 20 30 40 a0 &0 o B0
Subcarriers

)

a

T @‘ T @_ T

» —&— Deved from Impulse Response
@ 0.5 Derived from Simulink Model e
5

U S D SR A L S L TS e S el e e D D S L U T et L e e D -
B
M
E-D.B b
[=]
=

.1 = = =

0 10 20 30 40 50 &0 o B0
Subcarriers

You can see the constellation plot on the constellation scope. The scopes can be activated by using
the Control Scope button in the whdlOFDMReceiver.s1x model.

5-166

HDL OFDM Receiver

¥ i
File Tools View Help % | File Tools Wiew Help o
@-a0OPd :-a-He-laor® s-la-||-

Header Constellation Data Constellation

w5 & g
2 B W i
» v & %

=]

Amplitud

=]

Cluadrature A

5
=}
m
e=|
m
3
o

Ready T=0.022 |Ready T=0.024

HDL Code Generation

To generate the HDL code for this example, you must have HDL Coder™. Use makehdl and
makehdltb commands to generate HDL code and HDL testbench for the OFDM Receiver subsystem.
The testbench generation time depends on the simulation time.

The resulting HDL code is synthesized for a Xilinx® Zyng®-7000 ZC706 evaluation board. The post
place and route resource utilization and are shown in the table below. The maximum frequency of
operation is 202 MHz.

Resources Usage

Slice Registers 46642

Slice LUT 38457
RAMB36 14
RAMB18 12
DSP48 88
See Also
Blocks

Depuncturer | General CRC Syndrome Detector HDL Optimized | LTE Symbol Demodulator | OFDM
Channel Estimator | OFDM Demodulator | Viterbi Decoder

5-167

5 Reference Applications

Related Examples
. “HDL OFDM Transmitter” on page 5-135
. “HDL OFDM MATLAB References” on page 5-121

5-168

Deploy Custom Communication Systems on SoCs

Deploy Custom Communication Systems on SoCs

This example shows how to deploy a custom orthogonal frequency division multiplexing (OFDM)
transmit and receive algorithm on an SoC.

The “OFDM Transmit and Receive Using Analog Devices AD9361/AD9364” (Communications Toolbox
Support Package for Xilinx Zyng-Based Radio) example deploys an OFDM-based transmit and receive
algorithm HW/SW co-design implementation targeted on the Analog Devices AD9361/AD9364 radio
platform. This example is one of a related set of examples, which show the workflow for designing
and deploying an OFDM-based transmit and receive algorithm to hardware. This figure shows the
conceptual overview of the example.

Transmit Antenna

Tx
Front end
Filters

Simulink Software
Interface Model

A= OFDM
codeRate Transmitter

Tx
RF Interface

o

CFO insertion
ELT

snrdB AWGN ((((°)))))

Channel

Receive Antenna

insertCFO

Rx
Front end
Filters

enableinternalLoopback

Rx
RF Interface

Status Signals
Display/
Constellation
plot

OFDM

Receiver

* The OFDM Transmitter and OFDM Receiver perform all the high-speed signal processing tasks,
making them well suited for FPGA implementation on the programmable logic (PL) of the radio
platform. To implement this algorithm on the PL, the example reuses Simulink® models from the
“HDL OFDM Transmitter” on page 5-135 and “HDL OFDM Receiver” on page 5-151 examples as
model references. The example is also equipped with an internal channel to apply carrier
frequency offset (CFO) and an HDL AWGN channel from “HDL Implementation of AWGN
Generator” on page 4-44. Control signals insertCFO0 and snrdB are provided to tune the
channel.

* The normalization and denormalization of CFO involves division and multiplication operating at a
low rate making it well suited for software implementation on the integrated ARM® processing
system (PS).

See Also

Related Examples
. “HDL OFDM Receiver” on page 5-151

5-169

5 Reference Applications

. “HDL OFDM Transmitter” on page 5-135

5-170

WLAN HDL Time and Frequency Synchronization

WLAN HDL Time and Frequency Synchronization

-

_

Input
waveform

This example shows how to implement a WLAN time and frequency synchronization model that is
optimized for HDL code generation and hardware implementation. Time and frequency
synchronization are the key steps to recover wireless local area network (WLAN) packet information.

The model estimates and corrects the time and frequency offsets in the received WLAN signal that
are introduced by wireless channel and radio frequency (RF) front-end impairments. Initially, the
model performs coarse time and frequency estimation and corrections on the received signal. Then,
the model fine tunes the time and frequency estimation and corrections on the received signal to
remove any residual offsets. The model supports 20, 40, and 80 MHz bandwidth options for non-high
throughput (Non-HT), high throughput (HT), very high throughput (VHT), and high efficiency (HE)
frame formats. The example compares the Simulink® model output with the MATLAB® functions by
using WLAN Toolbox™ features.

WLAN packet decoding includes these stages: time and frequency synchronization, OFDM
demodulation, channel estimation & equalization, format detection, signal decoding, and data
decoding.

Time and OFDM Channel Format Signal Data S
ntormation

frequency —» demodulation ¥ estimation& - goeqion > decoding ® decoding > s
synchronization equalization

In this decoding procedure, only the time and frequency synchronization stage can be optimized for
HDL code generation. The HDL support is extended for other stages in a future release.

In MATLAB, run this command to open the example model.

model name = 'wlanhdlTimeAndFrequencySynchronization';
open_system(model name);

5-171

5 Reference Applications

startin

5-172

dataln

validin

convert

startin

WLANTimeAndFreguencySynchronization

Copyright 2020 The MalhWorks, Inc.

'.'JI out.syncedData I

.'-.-Jl out.validOut I

=+:ut.|ime$1,rncF'ulsel

out.freqOffset I

'.'JI out freqOffvalid I

>_>.|auLnumPamnedmm I

g —

The WLANTimeAndFrequencySynchronization model contains these subsystems: Coarse Time
Sync, Coarse CFO Estimation and Correction, Fine Time Sync, and Fine CFO Estimation and
Correction.

In MATLAB, run this command to open the WLANTimeAndFrequencySynchronization subsystem.

open_system([model name '/WLANTimeAndFrequencySynchronization'l], 'force');

datein

startin

validOl

IsiStart

LSTF_start
tfStarOut

Coarse Time Synchronization

Coarse Time Sync

reiOut

Coarse CFO Estimation and Corection

1
|

datain

lidin

stiStart

]—'
freqOff

Add

Lsti_start

aata0l

fraqOffvalid

LSTF _start

dataut

Fine Time Sync

IstfStaniOut

Fine CFO Estimation and Correctio

syncPulse
n
oo cont|— > @D

boalean

validOut

numPacketsDetected

The coarse time synchronization algorithm implements a double sliding window for correlation as
described in the MATLAB function wlanPacketDetect.m. The Coarse Time Sync subsystem uses
the autocorrelation of legacy short training field (L-STF) symbols to return an estimated packet-start

WLAN HDL Time and Frequency Synchronization

offset. The Peak Detector subsystem compares the correlation metrics with the energy of the signals
and determines the start of the packet. In the next stage, the fine symbol timing detection refines this
packet start estimate using the legacy long training field (L-LTF).

In MATLAB, run this command to open the Coarse Time Sync subsystem.

open_system([model name '/WLANTimeAndFrequencySynchronization/Coarse Time Sync']);

| dataln

GO

dataln

| validin

D,

startin

dataOut

orrin

corrOut

B cormin

D,

wvalidin

Coarse CFO Estimation and Correction

IeifStart f—— (A
validOut »| comalidin IstfStart
| stariin
energyOut
Cormrelator | energyin
»d
validOut
| validin
—|—> corrlalid validout f——— (@30
validQut
Emergy Calculator
| comalid —,—b- dataln
datalut
» =7 » datal
> * data0ut —— ()
dataOut
’—| validout p—— | datalalid
» 7 »
> >
Stream Synchronizer Peak Detector
@

rst

Considering the start of the packet from the Coarse Time Sync subsystem, Coarse CFO Estimation
and Correction subsystem performs autocorrelation on the input using a L-STF and averages the
calculated correlation metrics over a window of the L-STF duration. Then, the subsystem estimates

the carrier frequency offset (CFO) by considering the angle of the resulted metric.

In MATLAB, run this command to open the Coarse CFO Estimation subsystem.

open_system([model name '/WLANTimeAndFrequencySynchronization/Coarse CFO Estimation and Correctit

5-173

5 Reference Applications

D) ot oo cor
dataln B < [T Angle freqOfin
load Complex to Magnitude-Angle

HOL Cptimized anty . reqoriou — @

[P Isif_start load z! . I—I samplaFraqOff Freq
LSTF start . validOut valid valid ! [
"t =t st
Carralator

Averager Sample FraqOff

g
0

rstin rstOut

|

{ =] =] {=] "D

This subsystem uses the CFO estimate to correct the frequency offset.

In MATLAB, run this command to open the Coarse CFO Correction subsystem.

open_system([model name '/WLANTimeAndFrequencySynchronization/Coarse CFO Estimation and Correcti

datain1
@ ot o - y
data0ut (@)
dataln satainz DTConverter

e
2
DT Convarter
_.
-
1

2

retl r=tOut

Fine Time Synchronization

The Fine Time Sync subsystem takes the coarsely corrected time and frequency offset waveform for
fine time offset synchronization. The Correlator subsystem cross correlates the received signal with
the locally generated L-LTF. The Peak Searcher subsystem searches the maximum correlation peak
and then synchronizes the signal.

In MATLAB, run this command to open the Fine Time Sync subsystem.

open_system([model name '/WLANTimeAndFrequencySynchronization/Fine Time Sync']);

5-174

WLAN HDL Time and Frequency Synchronization

corrJut s corrin
C)————»{ datain
dataln tetistart | ——w(IEID
Lstf_start
—I—D coryalid
corrvalid
20— validn
validin I+ startin
startOut validout—— (@D
validOut
+ dataln
lstiStart
datalut
s validin
ssta0u|——>@D)
4) P r=tin dataCut
rstln validOut _—
Correlator Peak Searchar
rstCut

Fine CFO Estimation and Correction

The Fine CFO Estimation and Correction subsystem takes a fine time synced waveform as an input
for fine tuning the frequency offset. This subsystem estimates and corrects CFO to remove any
residue left after coarse frequency correction, performs fine CFO estimation similar to coarse
estimation by using the L-LTF instead of the L-STF, and estimates the frequency offset by considering
the angle of the averaged correlations.

In MATLAB, run this command to open the Fine CFO Estimation subsystem.

open_system([model name '/WLANTimeAndFrequencySynchronization/Fine CFO Estimation and Correction,

5-175

5 Reference Applications

LSTF_start

validOut
& - =
or

> orrOn
sugtorf— | Angle » freqOfiin
Cometator —»| Compl D bngiude-Anla b ok fregOfion —> @@
leFreqOff

sample FreqOff

1

rstin '-’z'_‘| >
= fragqValidOut

S = T S N

[[[[sian

The Fine CFO Correction subsystem uses the estimated fine CFO for correcting the residual
frequency offset and then outputs the corrected WLAN received signal.

In MATLAB, run this command to open the Fine CFO Correction subsystem.

open_system([model name '/WLANTimeAndFrequencySynchronization/Fine CFO Estimation and Correction,

@ o
IstfStartin

Lyl 71

@]

5-176

e ﬂjb H R e e e
ot -]

Model Interface and Verification

The example model accepts the received waveform as an input along with valid and start signals. The
model returns a synchronized waveform as an output along with a valid signal. The other outputs in
the example include a packet detected flag, a CFO estimate along with its valid and the number of
packets detected as an output. CFO estimate is the sum of coarse CFO and fine CFO estimates. The
wlanFrontEndInit script provides the input to the model. The wlanWaveformGenerator.m
function in the script generates the VHT 20 MHz frame, which is passed through the TGac channel
with a delay profile of Model A. The additive white Gaussian noise (AWGN) at 30 dB signal-to-noise
ratio (SNR) is added with other channel impairments of a 10 kHz CFO and a timing offset of '25".

fprintf('\n Simulating HDL time and frequency synchronization \n');

out = sim('wlanhdlTimeAndFrequencySynchronization.slx");
fprintf('\n HDL simulation complete. %d packet detected.',out.numPacketsDetected(end));

Simulating HDL time and frequency synchronization

WLAN HDL Time and Frequency Synchronization

HDL simulation complete. 1 packet detected.

The outputs of example are verified by using WLAN Toolbox functions. Specify the same input
waveform for the Simulink model and its MATLAB equivalent function and then compare outputs.

fprintf('\n Comparing WLAN MATLAB time and frequency synchronization \n')
inputWaveformRef inputWaveform(1l:end-length(Hd.Numerator)+1);
inputWaveformRef filter(Hd.Numerator,1,inputWaveformRef) ;

% WLAN packet detection
[startOffset,Mn]=wlanPacketDetect (inputWaveformRef, CBW) ;
rxWavel = inputWaveformRef(startOffset+l:end);

% Coarse CFO estimation and correction
coarseFreq0ff = wlanCoarseCFOEstimate(rxWavel, CBW);
rxWave2 = hwlanFrequencyOffsetCorrect(rxWavel, fs,coarseFreq0ff);

% Fine time synchronization

searchBufferLLTF = rxWave2(1l:wlanConfig.lstfLen*10+wlanConfig.lltfLen*3);
[offset,MN] = wlanSymbolTimingEstimate(searchBufferLLTF, CBW);

rxWave3 = rxWave2(offset+l:end);

[)

% Fine CFO estimation and correction
LTFs = rxWave3(1l0*wlanConfig.lstfLen+(1l:wlanConfig.lltfLen*2));
fineFreqO0ff = wlanFineCFOEstimate(LTFs,CBW);

matOut = hwlanFrequencyOffsetCorrect(rxWave3, fs,fineFreq0ff);
fprintf('\n MATLAB simulation complete. \n');

simData = out.syncedData;
simValid = out.validOut;

simOut = double(simData(simValid));

Comparing WLAN MATLAB time and frequency synchronization
MATLAB simulation complete.
Simulation Results

The example synchronizes the time and frequency of the input waveform generated using the
wlanFrontEndInit.m script and outputs the time and frequency corrected waveform as shown in
this timing diagram.

5-177

5 Reference Applications

» dataln -0.0115+0.0261i
validin
startin

» xOut

packetDetect

> freq(

freq(

» numPacketsDetected

The timing diagram shows that the output rxQut is synchronized at the start of the L-STF and that
the estimated frequency offset is 9.695 kHz, which is close to the introduced frequency offset of 10
kHz.

Comparison of Simulink Output and MATLAB Reference Output

plot(real(matOut));

hold on;

simOut = simOut(1l:length(matOut));

plot(real(simQut));

title('Comparison of Real Part of WLAN HDL Simulink and MATLAB reference output', 'FontSize', 10)
xlabel('Sample Number');

ylabel('Amplitude');

legend('Real Part of MATLAB reference output', 'Real part of Simulink output');

figure;

plot(imag(matOut));

hold on;

simOut = simOut(1l:length(matOut));

plot(imag(simOQut));

title('Comparison of Imaginary Part of WLAN HDL Simulink and MATLAB reference output', 'FontSize'
xlabel('Sample Number');

ylabel('Amplitude');

legend('Imaginary Part of MATLAB reference output', 'Imaginary part of Simulink Output');

5-178

WLAN HDL Time and Frequency Synchronization

CoTparison of Real Part of WLAN HDL Simulink and MATLAB reference output

Amplitude

Real Part of MATLAB reference output
Real part of Simulink output .

15 2 25 3
Sample Number « 104

5-179

5 Reference Applications

Comparison of Imaginary Part of WLAN HDL Simulink and MATLAB reference output
4 T T T T T

Imaginary Part of MATLAB reference output
Imaginary part of Simulink Output 4

Amplitude

-4
] 0.5 1 1.5 2 2.5 3
Sample Number « 104
See Also
Functions

wlanCoarseCFOEstimate | wlanFineCFOEstimate | wlanPacketDetect |
wlanSymbolTimingEstimate

5-180

HDL Interleaver and Deinterleaver

HDL Interleaver and Deinterleaver

This example shows how to design block interleaver and block deinterleaver blocks and implement
interleaving and deinterleaving in a communication system using these blocks.

Interleaving

Audio processing and radio transmission applications are often affected due to burst noise. Burst
noise degrades the performance of forward error correction (FEC) codes. This degradation of
performance results in the form of errors in the decoded data. Interleaving is a technique that
spreads out the continuous burst of errors and improves data decoding using FEC codes. Interleaving
is part of wireless standards such as digital video broadcasting - satellite-second generation (DVB-
S2), wireless local area network (WLAN 802.11), and long term evolution (LTE). This block diagram
shows the overview of a communication system with interleaver and deinterleaver.

Communication System

Source Data =—»| FEC Encoder |—* Block —_— Symbol
Interleaver Mapper |
Channel
Block Symbol \
Decoded Data <— FEC Decoder — . oc — ymbo
Deinterleaver Demapper

An interleaver writes the input data in a row-wise format to the memory and reads the output data in
a column-wise format from the memory. A deinterleaver operates in the reverse manner by writing
the input data in a column-wise format to the memory and reading the output data in a row-wise
format from the memory. The number of rows and columns decide the extent of interleaving. This

figure shows the working of a block interleaver and block deinterleaver, each with four rows and four
columns.

5-181

5 Reference Applications

Interleaver

Memory (RANM)
WIE ——

read d1 d? d3 d4
Input d5 d6 d7 da Cutput
di1, d2, d3, d4, d5 .. d1, d5, d9, d13, d2 ...
d9 d10 di1 di2
di13 di14 di5 dig

Deinterleaver

Memaory (RAM)
read ————»

write d1 d2 d3 d4
Input ds d6 d7 d8 Qutput
d1, d5, d9, d13, d2 ... d1, d2, d3, d4, d5 ...
d9 d10 d11 d12

5-182

d13 di4 d15 d16

HDL Interleaver Model

This section provides the overview of a communication system implemented using the
WHDLInterleaverModel.slx model, which contains interleaver and deinterleaver blocks. The input
data to the model, dataln, is convolutionally encoded using the Convolutional Encoder block. The
encoded data is then interleaved by the Interleaver Block that is in the Interleaver subsystem. Burst
noise is added to the interleaved data by performing a XOR operation of the data with the burst noise.
The corrupted data is given as an input to the Deinterleaver subsystem where the Deinterleaver
Block spreads out the burst errors in the data. The Viterbi Decoder block decodes the deinterleaved
data and outputs the final decoded data. The model contains additional subsystems that are used to
synchronize the blocks in the model. A constant block with the interleave variable is provided in
the Interleaver and Deinterleaver subsystems of the model. You can set or reset the interleave
variable to enable or disable interleaving.

HDL Interleaver and Deinterleaver

HDL Interleaver Model

This model shows encoding of input data, corrupting the encoded data with burst noise, and decoding the corrupted data. The encoding chain consists of convolutional encoder followed by interleaver.
Burst noise is introduced at the output of interleaver. The decoding chain reverses the operations of the encoding chain and performs deinterleaving and hard-decision viterbi i for i and i

nnnnn

Sample Conrol
"4 Bus Creator et

:

nnnnn

nnnnnnnnnnnnnnnnnnnnnnnn

Port Description

This section explains the input and output ports of the Interleaver Block that is in the Interleaver
subsystem of the WHDLInterleaverModel. s1x model.

dstain dataOut

startOut

endOut

endin validOut

),
Y startin
)
)

WO W W

validin ready

Interleaver Block

Input Ports:

* dataIln — Input data to be interleaved. As the block performs serial processing, dataln is
specified as a scalar. The block supports double, single, Boolean, integer, and fixed point
data types.

+ startIn — Start signal of the input data block, specified as a Boolean scalar.
* endIn — End signal of the input data block, specified as a Boolean scalar.
* validIn — Valid signal of the input data block, specified as a Boolean scalar.

Output Ports:

+ dataOut — Interleaved output data returned as a scalar. The output data type is same as that of
the dataln port.

+ startOut — Start signal of the output data block, returned as a Boolean scalar.

* endOut — End signal of the output data block, returned as a Boolean scalar.

* validOut — Valid signal of the output data block, returned as a Boolean scalar.

* ready — Ready output signal used for external interfacing, returned as a Boolean scalar. The
interleaver accepts one new block of input data while still processing an earlier data block. If
more than one block of data is given as input while processing an earlier data block, the ready
signal deasserts, indicating that the interleaver is not ready to accept new data.

5-183

5 Reference Applications

5-184

The input and output ports of the Deinterleaver Block, which is in the Deinterleaver subsystem of the
WHDLInterleaverModel. slx model, are the same as that of the Interleaver Block.

Parameters

This figure shows the block mask of the Interleaver Block. You can use this block as an interleaver or
a deinterleaver by modifying a parameter selection on the block mask.

Interleaver/Deinterleaver

Select the Interleaver parameter to use the block as an Interleaver
and clear the parameter to use the block as a Deinterleaver.

Interleaver

Maximum block size: |intrIuMaxBIk5ize | :

Nurmber of columns: |intrIvNCOIumn5 | :

Cancel Help Apply

The Interleaver Block supports these parameters:

* Interleaver — Nontunable mask parameter. Select the Interleaver parameter to use the block as
an Interleaver. Clear this parameter to use the block as a Deinterleaver.

* Maximum block size — Nontunable mask parameter. This parameter specifies the maximum
supported block size. This value sets the size of the RAM used inside the block. The minimum
value of this parameter is 4.

* Number of columns — Nontunable mask parameter. This parameter specifies the number of
columns. The minimum number of columns is 2 and must be a factor of Maximum block size.

The block size of the interleaver is tunable, meaning it can be adjusted during the simulation by
using the input start, end, and valid control signals. The block size is the number of input valid
samples from the start to the end of the data block. The block size must be an integer multiple of
Number of columns. The minimum value of the block size is Number of columns x 2 and the
maximum value is Maximum block size.

For example, if you specify the Maximum block size parameter as 30 and the Number of columns
parameter as 5, the possible values of the tunable block size during the simulation are 10, 15, 20, 25,
and 30. The block automatically calculates the number of rows, which varies with the block size.

Architecture

This section explains the architecture of the Interleaver Block. The Interleaver Block accepts the
input data in the form of data blocks along with control signals. The Interleaver Block interleaves
each data block independently. This figure shows the architecture of the Interleaver Block.

HDL Interleaver and Deinterleaver

@m.u .hﬂﬁm - din
e
..... .M s Give null output if valid 1s LOW
@ s |
s e o aaacu
@ ’%» vald |l
vvvvv
LD R]
i
\Write Logic st
In = (R — .m.u >
uuuuu
Classic
*{Push oige — .m.u 3
[pry T Numf arabut
:)7-‘ Pop | .m« -
‘Store Block Lengths]
foCount papfe u
aPapf=

Read Logic

HasePon

i
i
9

y
Generate Ready

The Interleaver Block contains three subsystems and two blocks:

Write Logic — This subsystem accepts input control signals and generates appropriate write valid
and write address signals for writing the data into the RAM.

Store Block Lengths — This is a FIFO block that stores the input data block lengths during the
simulation.

Read Logic — This subsystem performs the actual interleaving operation and generates the read
address to read out the data from the RAM.

Generate Ready — This subsystem generates the ready output signal for interfacing with other
blocks.

RAM — This block stores the input data and outputs interleaved data based on the input read
address.

Only the Generate Read Address subsystem in the Read Logic subsystem of the Interleaver Block and
Deinterleaver Block differs in its functionality, remaining other subsystems are same.

Model Simulation

Run the runWHDLInterleaverModel.m script to simulate the WHDLInterleaverModel.slx
model. The script initializes, simulates, and validates the outputs of the model. For optimum results,
tune the interleaving parameters in the script based on the burst noise parameters.

Disable interleaving and then run the script to simulate the model, validate the outputs, and display
errors.

errorRateWithoutInterleaving =

0.1354

5-185

5 Reference Applications

5-186

Enable interleaving and then run the script to simulate the model, validate the outputs, and display
erTors.

errorRateWithInterleaving =

0.0125

When you enable interleaving, the error rate is less than the error rate when you disable interleaving.
This result occurs because interleaving improves the performance of the Viterbi Decoder block by
spreading out the burst errors.

HDL Code Generation and Implementation Results

To check and generate the HDL code referenced in this example, you must have the HDL Coder™
product. To generate the HDL code, enter this command at the MATLAB command prompt.

>> makehdl('WHDLInterleaverModel/Deinterleaver/Deinterleaver Block')

The resource utilization and frequency of operation values vary with the input data type, the
maximum block size, and the number of columns. HDL code is synthesized for the Xilinx® Zynq®-
7000 ZC706 evaluation board for the Deinterleaver Block in the Deinterleaver subsystem with
fixdt (1,16, 14) input, a maximum block size of 360, and 30 columns. This table shows the post
place and route resource utilization. The maximum frequency of operation is 292 MHz. Similar
results are obtained for the Interleaver Block in the Interleaver subsystem.

Resources Usage
Slice Registers 293
Slice LUT 271
RAMB18 1

	Model Architecture
	Streaming Sample Interface
	What Is a Streaming Sample Interface?
	How Does a Streaming Sample Interface Work?
	Why Use a Streaming Sample Interface?
	Sample Stream Conversion
	Timing Diagram of Serial Sample Interface
	Using the nextFrame Output Signal

	Sample Control Bus
	Troubleshooting:

	Configure the Simulink Environment for Hardware Design
	About Simulink Model Templates
	Create Model Using Wireless HDL Toolbox Model Template
	Wireless HDL Toolbox Model Templates

	HDL Code Generation and Verification
	HDL Code Generation Support
	HDL Code Generation Support in Wireless HDL Toolbox
	Other Blocks Supporting HDL Code Generation
	Streaming Sample Interface in HDL

	Generate HDL Code
	Prepare Model
	Generate HDL Code
	Generate HDL Test Bench

	FPGA-in-the-Loop
	FIL Workflow: Framed Data from MATLAB
	FIL Workflow: Streaming Data from MATLAB

	Prototype Wireless Communications Algorithms on Hardware
	How to Install Support Packages
	Design Requirements
	Design for Debugging

	Reference Page Examples
	Append CRC Checksum to Streaming Data
	Check for CRC Errors in Streaming Samples
	Turbo Encode Streaming Samples
	Turbo Decode Streaming Samples
	Convolutional Encode of Streaming Samples
	Convolutional Decode of Streaming Samples
	Descrambling with Gold Sequence Generator
	Parallel Gold Sequence Generation
	LTE OFDM Demodulation of Streaming Samples
	Reset and Restart LTE OFDM Demodulation
	Modulate and Demodulate LTE Resource Grid
	OFDM Modulation of LTE Resource Grid Samples
	Depuncture and Decode Streaming Samples
	LTE Symbol Modulation of Data Bits
	NR Symbol Modulation of Data Bits
	LTE Symbol Demodulation of Complex Data Symbols
	NR Symbol Demodulation of Complex Data Symbols
	Application of FFT 1536 block in LTE OFDM Demodulation
	Convolutional Encode and Puncture Streaming Samples
	OFDM Demodulation of Streaming Samples
	Decode and recover message from RS codeword
	LDPC Encode and Decode of Streaming Data
	Estimate Channel Using Input Data and Reference Subcarriers
	Modulate and Demodulate OFDM Streaming Samples
	Polar Encode and Decode of Streaming Samples
	NR CRC Encode and Decode Streaming Data
	Equalize OFDM Data Using Channel Estimates
	LDPC Decode Streaming Data for Multiple Code Rates with Early Termination

	Featured Examples
	Sample Rate Conversion for an LTE Receiver
	HDL Code Generation for Filtered OFDM (F-OFDM) Transmitter
	HDL Implementation of a Variable-Size FFT
	Accelerate BER Measurement for Wireless HDL LTE Turbo Decoder
	Encode message to RS codeword
	HDL Implementation of AWGN Generator
	HDL Implementation of Digital Predistorter
	Encode Streaming Data Using General CRC Generator HDL Optimized Block for 5G NR Standard

	Reference Applications
	NR HDL MIB Recovery for FR2
	NR HDL MIB Recovery
	NR HDL Cell Search and MIB Recovery MATLAB Reference
	NR HDL Cell Search
	Deploy NR HDL Reference Applications on SoCs
	LTE HDL Cell Search
	LTE HDL SIB1 Recovery
	LTE HDL MIB Recovery
	LTE HDL PBCH Transmitter
	Deploy LTE HDL Reference Applications on SoCs
	HDL OFDM MATLAB References
	HDL OFDM Transmitter
	HDL OFDM Receiver
	Deploy Custom Communication Systems on SoCs
	WLAN HDL Time and Frequency Synchronization
	HDL Interleaver and Deinterleaver

